This data provides evidence for plate tectonic theory, including the Eartheamingidea: Some of the ocean floor revidence and you fix is possible for the Earth's heat flow and point out is key features: Concrete Heat flow evidence Concrete Show a plot of the Earth's heat flow and point six being to the surface within liquid magma and new plate material is made Concrete • The graph is very high at oceanic ridges where heat comes from the hot mantle comes to the surface within liquid magma and new plate material is made Construction, with guidance, of the heat flow graph from the sold as within liquid magma and new plate material is made • The heat flow graph from the sea floor above the oceanic plate that is carried away from the ndge slopes genity downwards - showing the cooling plate • a mirror image of the other heat flow graph from the sold sold with work of the inface of the infage be like? • The other high area is caused by the volcanic activity linked to partial melting above the plate as it is subducted • a mirror image of the other heat flow graph from the sold served by younger seliment, but if you drill through that, you lind that the oldest rocks of the ocean floor rocks are covered by younger seliment, but if you drill through that, you lind that the oldest rocks of the ocean floor rocks. Ask: What ould explain these patterns? • Construction, where is could would with move the sold at movid mear the subduction zones. The patter graph is the subducted • Ask: what pattern does the age of the other near that pattern does the age of the other near stare and move the coldest nocks are found than the ocean floor rocks. Ask: Why? • Construction,	Question/Activity	Likely response	Rationale
theory, including the Earthlearningidea: Which is the fastest spreading oceanic ridge? Heat flow evidence Show a plot of the Earth's heat flow and point out its key features: The graph shows the amount of heat that is being lost from the Earth at different places The graph is very high at oceanic ridges where heat comes from the hot manle comes to the surface within liquid magma and new plate material is made The plate becomes coolest and most dense at the trench, where it sinks in subduction The other high area is caused by the volcanic activity linked to partial metting above the becomes coolest and most dense at the trench, where it sinks in subduction The plate becomes coolest and most dense at the trench, where it sinks in subduction The tridge be like? The plate on that side was also being subducted The plate green areas are covered by younger sediment, but if you drill through that, you find that he oldest rocks of the coean floor. Show that: Ask: What could explain these patterns? Ask: what pattern does the age of the rocks show? Ask: What could explain these patterns? Ask: What neare of the cath is the fastest. Pattern by different process floor are beneath Ask: What measurements could you make to show you are correct Show the map of the gat of oceanic tithsphere, ask: Which is the fastest. Pattern by different process floor cocks. Ask: Why? Ask: What measurements could you make to show you are correct Show you are correct Ask: What measurements could you make to show you are correct Ask: What measurements could you make to show you are correct Show you are correct Show you are correct Show you are correct Show you are correct	This data provides evidence for plate tectonic		Some of the ocean
Which is the fastest spreading oceanic ridge? Its importance for plate tectonics Heat flow evidence . Heat flow evidence . Show a plot of the Earth's heat flow and point out its key features: . The graph is very high at oceanic ridges where heat comes from the hot mantle comes to the surface within liquid magma and new plate material is made . The ranker flow graph from the sea floor above the oceanic plate that is carried away from the ridge slopes gently downwards – showing the cooling plate . The plate becomes coolest and most dense at the trench, where it sinks in subduction . a mirror image of the other plate on that side was also being subducted Cognitive conflict: applying one pattern elsewhere Ask: What would the heat flow or pattern side of the coean floor and plate speed . . Construction: pattern elsewhere Age of the ocean floor and plate speed of the ocean floor and plate speed Show the map of the Earth showing the ages of the ocean floor are beneath cocean floor are beneath ocean floor are beneath cocean floor are beneath cocean floor are beneath rocks show? . . . Cognitive conflict: applying one pattern elsewhere of the schear flow and body neattern spotting . Ask: What pattern does the age of the corean floor are beneath cocean floor are beneath rocks show?	theory, including the Earthlearningidea:		floor evidence and
IndustpracticeHeat flow evidenceConcreteShow a plot of the Earth's heat flow and pointConcrete• The graph shows the amount of heat thatis being lost from the Earth at different• The graph is very high at oceanic ridgesThe graph is very high at oceanic ridges• The practice within liquid magmaand new plate material is made• The heat flow graph from the sea flooraway from the ridge slopes gentlydownwards – showing the cooling plate- The plate becomes coolest and most• The plate becomes coolest and most- a mirror image of the other• The other high area is caused by the volcanic activity linked to partial metting above the plate as it is subducted- a mirror image of the other heat flow graph – if the plate on that side was also• The other high area is caused by the volcanic activity linked to partial metting above the plate as it is subducted- a mirror image of the other heat flow graph – if the plate on that side was alsoCognitive conflict: aplying one pattern elsewhere• Age of the ocean floor and plate speed Show the map of the Earth showing the ages of the ocean floor are beneath toces afloor are beneath exist what could explain these patterns?- The vourgest ocean floor rocks are forund at the ocean floor are beneath exist what could explain these patterns?- Cognitive conflict: seeking explanation• Ask: What could explain these patterns?- Oceanic ridges being divergent marginsCognitive conflict: seeking explanation• Ask: What could explain these patterns?- Oceanic ridges being divergent marginsConstruction, with sp	'Which is the fastest spreading oceanic		its importance for
Show a plot of the Earth's heat flow and point out its key features: Concrete preparation about heat flow Construction, with guidance, of the heat flow Construction, with guidance, of the heat flow and new plate material is made • The graph is very high at oceanic ridges where heat comes from the hot mantle corms to the surface within liquid magma and new plate material is made Construction, with guidance, of the heat flow and throw the sea floor above the oceanic plate that is carried away from the ridge slopes genty downwards – showing the cooling plate Image: Construction, with guidance, of the heat flow path from the sea floor above the plate as its subducted • The other high area is caused by the volcanic activity linked to partial melting above the plate as its subducted Image of the other plate to that side was also being subducted Cognitive conflict. applying one pattern elsewhere being subducted Age of the ocean floor and plate speed floor Image of the corean floor. Show that: Image of the other plate to that side was also being subducted Construction: pattern-spotting Ask: What pattern does the age of the cocean floor. Show that: Image of the alters of the collisions Construction: pattern-spotting Ask: What could explain these patterns? Image of one another much more varied and mostly much older than the ocean floor rocks. Ask: Why? Image of nean with continential rocks are offset by faults - transform from by different processes from coeanic rocks are too oligitors and point the speaterns? Cognitive conflict: seeking explanation of previous Note that the rocks of the continents	Heat flow evidence		
out its key features:Preparation about heat flow Construction, with guidance, of the heat flow Construction, with guidance, of the heat flow pattern where heat comes from the hot mantle comes to the surface within liquid magma and new plate material is madePreparation about heat flow Construction, with guidance, of the heat flow patternThe graph is very high at oceanic ridges where heat comes from the hot mantle comes to the surface within liquid magma and new plate material is madeImage: Superstructure,	Show a plot of the Earth's heat flow and point		Concrete
 The graph shows the amount of heat that is being lost from the Earth at different places The graph is very high at oceanic ridges where heat comes from the hot mantle comes to the surface within liquid magma and new plate material is made The heat flow graph from the sea floor above the oceanic plate that is carried away from the ridge slopes gently downwards – showing the cooling plate The plate becomes coolest and most dense at the trench, where it sinks in subduction The plate becomes coolest and most dense at the trench, where it sinks in subduction The plate becomes coolest and most dense at the trench, where it sinks in subduction The plate becomes coolest and most dense at the trench, where it sinks in subduction The plate sexcellent evidence supporting plate tectoric theory Ask: What would the heat flow on the other side of the ridge be like? The plate gene areas are covered by younger sediment, but if you drill through that, you find that the oldest rocks of the ocean floor are beneath Ask: What pattern does the age of the coeanic floor rocks. Ask: Why at pattern does the age of the coeanic floor rocks. Ask: Why? Ask: What pattern does the age of the collisions Continental rocks are found near the subduction zones of the coeanic floor rocks. Ask: Why? Oceanic ridges being divergent margins Continental rocks are found that he ocean floor rocks. Ask: Why? Oceanic ridges being divergent margins Continental rocks are found that he ocean floor rocks. Ask: Why? Oceanic ridges being divergent margins Continental rocks are found that he ocean floor rocks. Ask: Why? Oceanic ridges being divergent margins Continental rocks are found that he ocean floor rocks. Ask: Why? Oceanic ridges being divergent margins Continental	out its key features:		preparation about
 Is being lost from the Earth at dimerent places The graph is very high at oceanic ridges where heat comes from the hot mantle comes to the surface within liquid magma and new plate material is made The heat flow graph from the sea floor above the oceanic plate that is carried away from the ridg slopes gently downwards – showing the cooling plate The plate becomes coolest and most dense at the trench, where it sinks in subduction The other high area is caused by the volcanic activity linked to partial melting above the plate as it is subducted Ask: What would the heat flow on the other side of the ridge be like? Ask: what vould the heat flow on the other floor and plate speed The dark yellow is the youngest ocean floor. Show that: The dark yellow is the youngest ocean floor are beneath floor are beneath Ask: what pattern does the age of the cocean floor are beneath Ask: What could explain these patterns? Construction faults Construction: faults Construction: faults Construction: plate on the other stokes have of the cocean floor racks are found near the subduction zones. The pattern show aniror image of one another ocean floor are beneath Costa refound at the ocean floor racks are of the cocean floor racks are found near the subduction zones. The pattern show aniror faults Coceanic ridges being divergent margins. Construction: faults. transform faults Construction of the bage of oceanic ridges being divergent margins. Continental rocks are too class are too low density to subduct. Stow that measurements could you make to show you are correct. Measure the width of rocks of this new question. Measure the width of rocks of this new question. 	• The graph shows the amount of heat that		heat flow
Integraph is very high at oceanic ridges where heat comes from the hot mantle comes to the surface within liquid magma and new plate material is madeHeat flow graph from the sea floor above the oceanic plate that is carried away from the ridge slopes gently domwards – showing the cooling plateHeat flow pattern• The plate becomes coolest and most dense at the trench, where it sinks in subduction• a mirror image of the other heat flow graph – if the plate on that side was also being subductedCognitive conflict: applying one pattern elsewhere• The drift of the ccean floor and plate speed• a mirror image of the other heat flow graph – if the plate on that side was also being subductedConstruction: pattern elsewhereAsk: What would the heat flow on the other side of the ridge be like?• The youngest ocean floorConstruction: pattern elsewhere• The dark yellow is the youngest ocean floor• The youngest ocean floor rocks are found near the subduction zones • The pale green areas are covered by younger sediment, but if you drill through that, you find that the oldest tocks of the ocean floor are beneath • Ask: what pattern does the age of the rocks show?• Cognitive conflict: seking explanationCognitive conflict: seking explanationNote that the rocks of the continents are much more varied and mostly much older than the ocean floor rocks. Ask: Why?• Continental rocks are formed by different previous knowledge to a new pattern noted spread of youngest rocks for de younge?• Construction; application of previous knowledge to a new pattern noted above to this new question• Ask: What measurements could you ma	is being lost from the Earth at different		Construction, with
The graph representation in the hort manife comes to the surface within liquid magma and new plate material is made In the heat flow graph from the sea floor above the oceanic plate that is carried away from the ridge slopes gently downwards – showing the cooling plate • The heat flow graph from the sea floor above the oceanic plate that is carried away from the ridge slopes gently downwards – showing the cooling plate The plate becomes coolest and most dense at the trench, where it sinks in subduction The other high area is caused by the volcanic activity linked to partial melting above the plate as it is subducted This all provides excellent evidence supporting plate tectonic theory Ask: What would the heat flow on the other side of the ccean floor and plate speed Show the map of the Earth showing the ages of the ocean floor are beneath floor The dark yellow is the youngest ocean floor rocks are found at the ocean floor are beneath floor are beneath but if you drill through that, you find that the oldest rocks of the cocean floor rocks show? Ask: What tocuid explain these patterns? Coantinental rocks are form ceanic ridges being divergent margins Construction: pattern-spotting explanation Construction: previous from ceanic ridges being divergent margins Construction: previous from ceanic ridges being divergent margins Construction: previous from ceanic ridges being divergent margins Continental rocks are too low density to subduct Ask: What reasurements could you make to show you are correct Measure the width of rocks of youngest rocks freading oceanic ridge?	 The graph is very high at oceanic ridges 		heat flow pattern
comes to the surface within liquid magma and new plate material is madeThe heat flow graph from the sea floor above the oceanic plate that is carried away from the ridge slopes gently downwards – showing the cooling plateThe heat flow graph ride becomes coolest and most dense at the trench, where it sinks in subductionThe other high area is caused by the volcanic activity linked to partial melting above the plate as it is subductedThe other high area is caused by the volcanic activity linked to partial melting above the plate as it is subductedAsk: What would the heat flow on the other side of the ridge be like?Age of the ocean floor and plate speed Show the map of the Earth showing the ages thor are beneathThe dark yellow is the youngest ocean floorThe bale green areas are covered by younger sediment, but if you drill through tocks are found at the ocean floor are beneathAsk: What pattern does the age of the rocks as how?Ask: What could explain these patterns?Oceanic ridges being divergent marginsAsk: What could explain these patterns?Octa that the rocks of the continents are much more varied and mostly much older than the ocean floor rocks. Ask: Why?Ask: What could explain these patterns?Octa that the rocks of the continents are much more varied and mostly much older than the ocean floor rocks. Ask: Why?Based on the map of the age of oceanic lithosphere, ask: Which is the fastest- spreading oceanic ridge?Ask: What measurements could you make to show you are correctAsk: What measurements could you make to show you are correctAsk: What measurements could	where heat comes from the hot mantle		
 and new plate material is made The heat flow graph from the sea floor above the oceanic plate that is carried away from the ridge slopes gently downwards – showing the cooling plate The plate becomes coolest and most dense at the trench, where it sinks in subduction The other high area is caused by the volcanic activity linked to partial melting above the plate as it is subducted This all provides excellent evidence supporting plate tectonic theory Ask: What would the heat flow on the other side of the ridge be like? Ask: What would the heat flow on the other floor and plate speed Show the map of the Earth showing the ages of the ocean floor. Show that: The plate green areas are covered by younger sediment, but if you drill through that, you find that the oldest rocks of the ocean floor rocks. Ask: What pattern does the age of the rocks show? Ask: What pattern does the age of the rocks of the ocean floor rocks. Ask: Why? Ask: What pattern does the age of oceanic ridges being divergent margins Construction: rocks are fourd most you holder that the ocean floor rocks. Ask: Why? Oceanic ridges being divergent margins Continental rocks are too low density to subduct Continental rocks are too low density of younge plate or coeanic rocks - during plate collisions Continental rocks are too low density to subduct The ore with the widest spreading oceanic ridge? Measure the width of rocks of the continents are too low density to subduct The ore with the widest spreading oceanic ridge? Measure the width of rocks of the continents rocks are too low density to subduct Show the map of the age of oceanic lithosphere, ask: Which is the fastest-spreading oceanic ridge? Measure the width of rocks of the rocher the stow of a certain age (e.g. less than 30Ma) at a certain age (e.g. less than 30Ma) at a certain age (e.g. less than 30Ma)	comes to the surface within liquid magma		
 The heat flow graph from the sea floor above the oceanic plate that is carried away from the ridge slopes gently downwards – showing the cooling plate extense colest and most dense at the trench, where it sinks in subduction The other high area is caused by the volcanic activity linked to partial melting above the plate as it is subducted This all provides excellent evidence supporting plate tectonic theory Ask: What would the heat flow on the other side of the ridge be like? Ask what would the heat flow on the other side of the ridge be like? Ask what would the heat flow on the other side of the ccean floor and plate speed The dark yellow is the youngest ocean floor focks are found at the ocean floor are beneath flow or flow are beneath the oldest rocks of the ocean floor race beneath Ask: What could explain these patterns? Ask: What could explain these patterns? Ask: What could explain these patterns? Continental rocks are fourd flate speed offere that the rocks of the coean floor rocks. Ask: Why? Oceanic ridges being divergent margins Construction: rocks are found at the rocks show? Continental rocks are found at the rocks of the coeting that, you find that the oldest rocks of the coeting that, you find that the oldest rocks of the coeting that, you find that the age of the rocks are found at the rocks are found the age of the other rocks show? Continental rocks are found at the rocks are found that the rocks of the coeting that you different processes from ceeanic rocks are too low density to subduct The one with the widest spread of youngest rocks are too low density to subduct The one with the widest spread of youngest rocks what measurements could you make to show you are correct Max what measurements could you make to show you are correct Max what measurements	and new plate material is made		
a above the loceanit plate that is carried away from the ridge slopes gently downwards – showing the cooling plate• The plate becomes coolest and most dense at the trench, where it sinks in subduction• a mirror image of the other heat flow graph – if the plate on that side was also being subductedCognitive conflict: applying one pattern elsewhere• Age of the ocean floor and plate speed• a mirror image of the other heat flow graph – if the plate on that side was also being subductedCognitive conflict: applying one pattern elsewhereAge of the ocean floor and plate speed• The youngest ocean floor rocks are found at the ocean floor are beneath floor• The youngest ocean floor rocks are found at the ocean floor are beneath ocean floor are beneath exist what pattern does the age of the rocks show?• The youngest ocean floor rocks are found at the oceanic ridges • The plates transform faults• Construction: pattern-spotting• Ask: what pattern does the age of the rocks show?• Oceanic ridges being divergent marginsCognitive conflict: seeking explanation• Note that the rocks of the continents are much more varied and mostly much older than the ocean floor rocks. Ask: Why?• Continental rocks are formed by different processes from oceanic rocks are ford youngest to subduct• Onstruction; application of previous hrow you are correctBased on the map of the age of oceanic lithosphere, ask: What measurements could you make to show you are correct• Measure the width of rocks of a certain age (e.g. less than 30Ma) at a certain pattern and compare or a certain age (e.g. less than 30Ma) at a certain age (e.g. less	The heat flow graph from the sea floor		
downwards - showing the cooling plateThe plate becomes coolest and most dense at the trench, where it sinks in subductionThe other high area is caused by the volcanic activity linked to partial melting above the plate as it is subductedThis all provides excellent evidence supporting plate tectonic theoryAsk: What would the heat flow on the other side of the ridge be like?Age of the ocean floor and plate speedShow the map of the Earth showing the ages of the ocean floor. Show that:The plate green areas are covered by younger sediment, but if you drill through that, you find that the oldest rocks of the ocean floor are beneathAsk: what pattern does the age of the rocks show?Ask: What could explain these patterns?Note that the rocks of the cotean floor rocks. Ask: Why?Note that the rocks of the cotean floor rocks. Ask: Why?Note that the rocks of the cotean floor rocks. Ask: Why?ObserverAsk: What could explain these patterns?Oute that the rocks of the cotean floor rocks. Ask: Why?Oute that the rocks of the cotean floor rocks. Ask: Why?Oute that the rocks of the cotean floor rocks. Ask: Why?Oute that the rocks of the cotean floor rocks. Ask: Why?Oute that the rocks of the cotean floor rocks. Ask: Why?Oute that the rocks of the cotean floor rocks. Ask: Why?Oute that the rocks of the cotean floor rocks. Ask: Why?Oute that the rocks of the cotean floor rocks. Ask: Why?Oute that the rocks of the cotean floor rocks. Ask: Why?Oute that the rocks of the cotean floor rocks. Ask: Why?Oute that the rocks of the cotean floor r	above the oceanic plate that is carried		
 The plate becomes coolest and most dense at the trench, where it sinks in subduction The other high area is caused by the volcanic activity linked to partial melting above the plate as it is subducted This all provides excellent evidence supporting plate tectonic theory Ask: What would the heat flow on the other side of the ridge be like? a mirror image of the other heat flow on the other side of the ridge be like? The dark yellow is the youngest ocean floor and plate speed The dark yellow is the youngest ocean floor and plate speed floor are the subduction zones. The pale green areas are covered by younger sediment, but if you drill through that, you find that the oldest rocks of the ocean floor are beneath Ask: What could explain these patterns? Oceanic ridges being divergent margins divergent margins Construction: rocks are fourd near the subduction zones. Construction: rocks are fourd near the subduction zones. The pate green areas are covered by younger sediment, but if you drill through that, you find that the oldest rocks of the continents are much more varied and mostly much older than the ocean floor rocks. Ask: Why? Oceanic ridges being divergent margins Construction: rocks are fourd precises from oceanic ridges being collisions Continental rocks are toro low density to subduct Based on the map of the age of oceanic ridges The one with the widest spreading oceanic ridge? Ask: What measurements could you make to show you are correct Ask: What measurements could you make to show you are correct 	downwards – showing the cooling plate		
dense at the trench, where it sinks in subductionComment above the plate as it is subductedThe other high area is caused by the volcanic activity linked to partial melting above the plate as it is subducted- a mirror image of the other heat flow graph – if the plate on that side was also being subductedCognitive conflict: applying one pattern elsewhereAge of the ocean floor and plate speed- The youngest ocean floor rocks are found at the oceanic ridgesConstruction: pattern elsewhereAge of the ocean floor and plate speed- The youngest ocean floor rocks are found at the oceanic ridgesConstruction: pattern-spottingThe dark yellow is the youngest ocean floor wounger sediment, but if you drill through that, you find that the oldest rocks of the ocean floor are beneath • Ask: what pattern does the age of the rocks show?- The paterns show a mirror image of one another • Many of the blocks are offset by faults - transform faultsCognitive conflict: seeking explanationNote that the rocks of the continents are much more varied and mostly much older than the ocean floor rocks. Ask: What measurements could you make to spreading oceanic ridge?- Continental rocks are too low density to subductConstruction; application of previous knowledge to a new pattern noted above to this new questionAsk: What measurements could you make to show you are correct- Measure the width of rocks of a certain age (e.g. less than 30Ma) at a certain ang (e.g. less than 30Ma) at a certain applying the interview and some and encore pattern noted above to this new question	The plate becomes coolest and most		
 The other high area is caused by the volcanic activity linked to partial melting above the plate as it is subducted This all provides excellent evidence supporting plate lectonic theory Ask: What would the heat flow on the other side of the ridge be like? a mirror image of the other heat flow on the other side of the acean floor and plate speed Show the map of the Earth showing the ages of the ocean floor. Show that: The dark yellow is the youngest ocean floor or are beneath floor Ask: what pattern does the age of the ocean floor are beneath Ask: What could explain these patterns? Oceanic ridges being divergent margins Cognitive conflict: applying one platern-spotting oceanic ridges The other statern does the age of the ocean floor are beneath Ask: What could explain these patterns? Oceanic ridges being divergent margins Construction: pattern does the age of the ordination of previous knowledge to a new pattern Construction: procks are found at the ocean floor rocks. Ask: Why? Continental rocks are found mean floor or coks. Ask: Why? Continental rocks are found mean floor or coks. Ask: Why? Continental rocks are found mean of the age of coeanic ridges being divergent margins Construction: paperation Construction: paperation of previous knowledge to a new pattern Continental rocks are found at the voldes: a divergent margins Construction: paperation of previous knowledge to a new pattern noted above to this new question Ask: What measurements could you make to show you are correct Mate an other map of the age of oceanic has a certain age (e.g. less than 30Ma) at a certain batility de <!--</td--><td>dense at the trench, where it sinks in</td><td></td><td></td>	dense at the trench, where it sinks in		
 The other high area is caused by the volcanic activity linked to partial melting above the plate as it is subducted This all provides excellent evidence supporting plate tectonic theory Ask: What would the heat flow on the other side of the ridge be like? Age of the ocean floor and plate speed Show the map of the Earth showing the ages of the cotean floor of the ocean floor show that: The dark yellow is the youngest ocean floor for cocks are found at the ocean floor are beneath Ask: What could explain these patterns? Note that the rocks of the continents are much more varied and mostly much older than the ocean floor rocks. Ask: Why? Note that the map of the age of oceanic ridges Continental rocks are too low density to subduct Construction: pattern oted adom states are could you make to show you are correct Maxing other age of oceanic ridge? Note that the rocks of the continents are much more varied and mostly much older than the ocean floor rocks. Ask: Why? Continental rocks are too low density to subduct The one with the widest spread of youngest rocks of a certain age (e.g. less than 30Ma) at a certain batility de and comparison 	subduction		
above the plate as it is subducted• This all provides excellent evidence supporting plate tectonic theoryAsk: What would the heat flow on the other side of the ridge be like?• a mirror image of the other heat flow graph – if the plate on that side was also being subducted• Age of the ocean floor and plate speedShow the map of the Earth showing the ages of the ocean floor. Show that:• The dark yellow is the youngest ocean floor• The pale green areas are covered by younger sediment, but if you drill through that, you find that the oldest rocks of the ocean floor are beneath• Ask: what pattern does the age of the rocks show?Ask: What could explain these patterns?• Ote that the rocks of the continents are much more varied and mostly much older than the ocean floor rocks. Ask: Why?• Continental rocks are too low density to subduct• Based on the map of the age of oceanic than the oceanic ridge?• Ask: What measurements could you make to show you are correct• Ask: What measurements could you make to show you are correct• Ask: What measurements could you make to show you are correct• Measure the width of rocks of a certain age (e.g. less than 30Ma) at a certain built de and commany• Measure the width of rocks of a certain age (e.g. less than 30Ma) at a certain built de and commany• Measure the width of rocks of a certain age (e.g. less than 30Ma) at a certain built de and commany• Measure the width of rocks of a certain age (e.g. less than 30Ma) at a certain built de and commany• Measure the width of rocks of a certain age (e.g.	 The other high area is caused by the volcanic activity linked to partial melting 		
 This all provides excellent evidence supporting plate tectonic theory Ask: What would the heat flow on the other side of the ridge be like? a mirror image of the other plate on that side was also being subducted Age of the ocean floor and plate speed Show the map of the Earth showing the ages of the ocean floor. Show that: The dark yellow is the youngest ocean floor nocks are found at the ocean floor are beneath ocean floor are beneath Ask: what pattern does the age of the nocks show? Ask: What could explain these patterns? Oceanic ridges being divergent margins Construction: pattern show a mirror image of one another nocks show? Oceanic ridges being divergent margins Construction: pattern show a mirror image of one another nocks show? Oceanic ridges being divergent margins Construction: patterns show a mirror image of one another nocks show? Oceanic ridges being divergent margins Construction: patterns? Oceanic ridges being divergent margins Continental rocks are form dow different processes from oceanic rocks - during plate collisions Continental rocks are too low density to subduct The one with the widest spread of youngest rocks Shead on the map of the age of oceanic lithosphere, ask: Which is the fastest-spreading oceanic ridge? Measure the width of rocks of a certain age (e.g. less than 30Ma) at a certai	above the plate as it is subducted		
supporting plate tectonic theoryAsk: What would the heat flow on the other side of the ridge be like?• a mirror image of the other heat flow graph – if the plate on that side was also 	This all provides excellent evidence		
Ask: What would the heat flow on the other side of the ridge be like?• a mirror image of the other heat flow graph – if the plate on that side was also being subducted• applying one pattern elsewhereAge of the ocean floor and plate speed• The youngest ocean floor rocks are found at the oceanit ridges• The youngest ocean floor rocks are found at the oceanit ridges• Construction: pattern elsewhere• The dark yellow is the youngest ocean floor• The pale green areas are covered by younger sediment, but if you drill through that, you find that the oldest rocks of the ocean floor are beneath• The pattern show a mirror image of one anotherConstruction: pattern-spotting• Ask: What could explain these patterns?• Oceanic ridges being divergent marginsCognitive conflict: seeking explanationNote that the rocks of the continents are much more varied and mostly much older than the ocean floor rocks. Ask: Why?• Continental rocks are formed by different processes from oceanic rocks are too low density to subductConstruction; application of previous knowledge to a new patternBased on the map of the age of oceanic lithosphere, ask: Which is the fastest- spreading oceanic ridge?• Measure the width of rocks of a certain age (e.g. less than 30Ma) at a certain lithiude and compareBridging; applying the pattern noted above to this new question	supporting plate tectonic theory		
Side of the indge belinke?Integrating integrationAge of the ocean floor and plate speedintegrationShow the map of the Earth showing the ages of the ocean floor. Show that:• The youngest ocean floor rocks are found at the oceanic ridges• The youngest ocean floor rocks are found at the oceanic ridges• The oldest ones are found near the subduction zones • The pate green areas are covered by younger sediment, but if you drill through that, you find that the oldest rocks of the ocean floor are beneath • Ask: what pattern does the age of the rocks show?• The patterns show a mirror image of one another • Many of the blocks are offset by faults - transform faultsCognitive conflict: seeking explanationNote that the rocks of the continents are much more varied and mostly much older than the ocean floor rocks. Ask: Why?• Continental rocks are formed by different processes from oceanic rocks are too low density to subductConstruction: pattern.spottingBased on the map of the age of oceanic lithosphere, ask: Which is the fastest- spreading oceanic ridge?• The one with the widest spread of youngest rocksBridging; applying the pattern noted above to this new questionAsk: What measurements could you make to show you are correct• Measure the width of rocks of a certain age (e.g. less than 30Ma) at a certain lithiude and compareBridging; applying the pattern noted above to file; conflict: this only works if you compare at a contain lithiude and compare	Ask: What would the heat flow on the other	a mirror image of the other	Cognitive conflict:
Age of the ocean floor and plate speedPattern spot must also being subductedPattern spot must also being subductedAge of the ocean floor and plate speed• The youngest ocean floor rocks are found at the oceanic ridges• The youngest ocean floor rocks are found at the oceanic ridgesConstruction: pattern-spotting• The pale green areas are covered by younger sediment, but if you drill through that, you find that the oldest rocks of the ocean floor are beneath • Ask: what pattern does the age of the rocks show?• The patterns show a mirror image of one another • Many of the blocks are offset by faults - transform faultsCognitive conflict: seeking explanationNote that the rocks of the continents are much more varied and mostly much older than the ocean floor rocks. Ask: Why?• Continental rocks are formed by different processes from oceanic rocks are too low density to subductConstruction; application of previous knowledge to a new patternBased on the map of the age of oceanic lithosphere, ask: Which is the fastest- spreading oceanic ridge?• Measure the width of rocks of a certain age (e.g. less than 30Ma) at a certain aged compare and compare a do compare or acetain latifuide and compare or acetain latifuide and compare or acetain latifuide and compareBridging: applying the pattern noted above to this new question	side of the huge be like?	neat now graph – If the	pattern elsewhere
Age of the ocean floor and plate speedConstruction: rocks are found at the oceanic ridgesConstruction: pattern-spotting• The dark yellow is the youngest ocean floor• The youngest ocean floor rocks are found at the oceanic ridgesConstruction: pattern-spotting• The pale green areas are covered by younger sediment, but if you drill through that, you find that the oldest rocks of the ocean floor are beneath• The patterns show a mirror image of one anotherConstruction: pattern-spotting• Ask: what pattern does the age of the rocks show?• Oceanic ridges being divergent marginsCognitive conflict: seeking explanationNote that the rocks of the continents are much more varied and mostly much older than the ocean floor rocks. Ask: Why?• Continental rocks are formed by different processes from oceanic rocks are too low density to subductConstruction; application of previous knowledge to a new patternBased on the map of the age of oceanic lithosphere, ask: Which is the fastest- spreading oceanic ridge?• Measure the width of rocks of a certain age (e.g. less than 30Ma) at a certain aged compare and compare or and compare or actininationBridging; applying the pattern noted above to this new question		being subducted	
Show the map of the Earth showing the ages of the ocean floor. Show that:• The youngest ocean floor rocks are found at the oceanic ridgesConstruction: pattern-spotting• The dark yellow is the youngest ocean floor• The pale green areas are covered by younger sediment, but if you drill through that, you find that the oldest rocks of the ocean floor are beneath• The pattern show a mirror image of one anotherConstruction: pattern-spotting• Ask: what pattern does the age of the rocks show?• The blocks are offset by faults - transform faultsCognitive conflict: seeking explanationNote that the rocks of the continents are much more varied and mostly much older than the ocean floor rocks. Ask: Why?• Continental rocks are formed by different processes from oceanic rocks are too low density to subductCognitive conflict: seeking explanationBased on the map of the age of oceanic lithosphere, ask: Which is the fastest- spreading oceanic ridge?• The one with the widest spread of youngest rocksBridging; applying the pattern noted above to this new questionAsk: What measurements could you make to show you are correct• Measure the width of rocks of a certain age (e.g. less than 30Ma) at a certain abitive and compare than an 20Ma) at a certain abitive and compareCognitive conflict: this only works if you compare at a certain lative and compare	Age of the ocean floor and plate speed		
 The dark yellow is the youngest ocean floor The pale green areas are covered by younger sediment, but if you drill through that, you find that the oldest rocks of the ocean floor are beneath Ask: what pattern does the age of the rocks show? Ask: What could explain these patterns? Note that the rocks of the continents are much more varied and mostly much older than the ocean floor rocks. Ask: Why? Continental rocks are too low density to subduct Based on the map of the age of oceanic lithosphere, ask: Which is the fastest-spreading oceanic ridge? Ask: What measurements could you make to show you are correct Make What measurements could you make to show you are correct Ask: What measurements could you make to show you are correct Ask: What measurements could you make to show you are correct Ask: What measurements could you make to show you are correct Ask: What measurements could you make to show you are correct Ask: What measurements could you make to show you are correct Ask: What measurements could you make to show you are correct Ask: What measurements could you make to show you are correct Ask: What measurements could you make to show you are correct Ask: What measurements could you make to show you are correct Ask: What measurements could you make to show you are correct Ask: What measurements could you make to show you are correct Ask: What measurements could you make to show you are correct Ask: What measurements could you make to show you are correct Ask: What measurements could you make to show you are correct Ask: What measurements could you make to show you are correct Ask: What measurements could you make to show you are correct Ask: What measurements could you make to show you are correct Ask: What measurements could you make to show you are correct As	Show the map of the Earth showing the ages	The youngest ocean floor	Construction:
 The dark yends is the youngest ocean floor The pale green areas are covered by younger sediment, but if you drill through that, you find that the oldest rocks of the ocean floor are beneath Ask: what pattern does the age of the rocks show? Ask: What could explain these patterns? Oceanic ridges being divergent margins Continental rocks are form oceanic rocks - during plate collisions Continental rocks are too low density to subduct Based on the map of the age of oceanic ridge? Based on the map of the age of oceanic ridge? Ask: What measurements could you make to show you are correct Measure the width of rocks of a certain age (e.g. less than 30Ma) at a certain ge (e.g. less than	of the ocean floor. Show that:	rocks are found at the	pattern-spotting
 The pale green areas are covered by younger sediment, but if you drill through that, you find that the oldest rocks of the ocean floor are beneath Ask: what pattern does the age of the rocks show? Ask: What could explain these patterns? Note that the rocks of the continents are much more varied and mostly much older than the ocean floor rocks. Ask: Why? Continental rocks are formed by different processes from oceanic rocks – during plate collisions Continental rocks are too low density to subduct The one with the widest spreading oceanic ridge? Measure the width of rocks of a certain age (e.g. less than 30Ma) at a certain latitude and compare. 	floor	The oldest ones are found	
younger sediment, but if you drill through that, you find that the oldest rocks of the ocean floor are beneathThe patterns show a mirror image of one another• Ask: what pattern does the age of the rocks show?• Many of the blocks are offset by faults - transform faults• Oceanic ridges being divergent marginsCognitive conflict: seeking explanationAsk: What could explain these patterns?• Oceanic ridges being divergent marginsCognitive conflict: seeking explanationNote that the rocks of the continents are much more varied and mostly much older than the ocean floor rocks. Ask: Why?• Continental rocks are formed by different processes from oceanic rocks - during plate collisionsConstruction; application of previous knowledge to a new patternBased on the map of the age of oceanic lithosphere, ask: Which is the fastest- spreading oceanic ridge?• Measure the width of rocks of a certain age (e.g. less than 30Ma) at a certain latitude and a compareBridging; applying the pattern noted above to this new question	The pale green areas are covered by	near the subduction zones	
that, you find that the oldest rocks of the ocean floor are beneathimage of one another• Ask: what pattern does the age of the rocks show?• Many of the blocks are offset by faults - transform faults• Ask: What could explain these patterns?• Oceanic ridges being divergent marginsCognitive conflict: seeking explanationNote that the rocks of the continents are much more varied and mostly much older than the ocean floor rocks. Ask: Why?• Continental rocks are formed by different processes from oceanic rocks - during plate collisionsConstruction; application of previous knowledge to a new patternBased on the map of the age of oceanic lithosphere, ask: Which is the fastest- spreading oceanic ridge?• Measure the width of rocks of a certain age (e.g. less than 30Ma) at a certain latitude area commoneBridging; applying the pattern noted above to this new question	younger sediment, but if you drill through	 The patterns show a mirror 	
 Ocean floor are beneath Ask: what pattern does the age of the rocks show? Ask: What could explain these patterns? Oceanic ridges being divergent margins Oceanic ridges being divergent margins Cognitive conflict: seeking explanation Construction; application of previous knowledge to a new pattern Continental rocks are too low density to subduct Based on the map of the age of oceanic lithosphere, ask: Which is the fastest-spreading oceanic ridge? Many of the blocks are too show you are correct Measure the width of rocks of a certain age (e.g. less than 30Ma) at a certain age (e.g. less than 30Ma) at a certain latitude and compare 	that, you find that the oldest rocks of the	image of one another	
 Ask: What could explain these patterns? Oceanic ridges being divergent margins Oceanic ridges being divergent margins Cognitive conflict: seeking explanation Construction; application of previous from oceanic rocks – during plate collisions Continental rocks are too low density to subduct Based on the map of the age of oceanic ridge? Ask: What measurements could you make to show you are correct Measure the width of rocks of a certain age (e.g. less than 30Ma) at a certain latitude and compare 	ocean floor are beneath	Many of the blocks are	
Ask: What could explain these patterns?• Oceanic ridges being divergent marginsCognitive conflict: seeking explanationNote that the rocks of the continents are much more varied and mostly much older than the ocean floor rocks. Ask: Why?• Continental rocks are formed by different processes from oceanic rocks – during plate collisions• Construction; application of previous knowledge to a new patternBased on the map of the age of oceanic lithosphere, ask: Which is the fastest- spreading oceanic ridge?• Measure the width of rocks of a certain age (e.g. less than 30Ma) at a certain latitude and compareBridging; applying the pattern noted above to this new question	 Ask. what patient does the age of the rocks show? 	faults	
Note that the rocks of the continents are much more varied and mostly much older than the ocean floor rocks. Ask: Why?• Continental rocks are formed by different 	Ask: What could explain these patterns?	Oceanic ridges being	Cognitive conflict:
Note that the rocks of the continents are much more varied and mostly much older than the ocean floor rocks. Ask: Why?Continental rocks are formed by different processes from oceanic rocks – during plate collisionsConstruction; application of previous knowledge to a new patternBased on the map of the age of oceanic lithosphere, ask: Which is the fastest- spreading oceanic ridge?The one with the widest spread of youngest rocksBridging; applying the pattern noted above to this new questionAsk: What measurements could you make to show you are correct• Measure the width of rocks of a certain age (e.g. less than 30Ma) at a certain lotitude and compareCognitive conflict: this only works if you compare at a certain latitude		divergent margins	seeking
Note that the rocks of the continents are much more varied and mostly much older than the ocean floor rocks. Ask: Why?• Continental rocks are formed by different processes from oceanic rocks – during plate collisionsConstruction; application of previous knowledge to a new patternBased on the map of the age of oceanic lithosphere, ask: Which is the fastest- spreading oceanic ridge?• Continental rocks are too low density to subductBridging; applying the pattern noted above to this new questionAsk: What measurements could you make to show you are correct• Measure the width of rocks of a certain age (e.g. less than 30Ma) at a certain lotifue and compareConstruction; application of previous knowledge to a new pattern			explanation
Inder more valied and mosity much older than the ocean floor rocks. Ask: Why?Iormed by different processes from oceanic rocks – during plate collisionsapplication of previous knowledge to a new patternBased on the map of the age of oceanic lithosphere, ask: Which is the fastest- spreading oceanic ridge?• The one with the widest spread of youngest rocksBridging; applying the pattern noted above to this new questionAsk: What measurements could you make to show you are correct• Measure the width of rocks of a certain age (e.g. less than 30Ma) at a certain latitude and compareCognitive conflict: this only works if you compare at a certain latitude	Note that the rocks of the continents are	Continental rocks are	Construction;
InterferenceProcessesInterferenceProcessesinterference <td>than the ocean floor rocks. Ask: Why?</td> <td>processes from oceanic</td> <td>previous</td>	than the ocean floor rocks. Ask: Why?	processes from oceanic	previous
collisionsnew patternBased on the map of the age of oceanic lithosphere, ask: Which is the fastest- spreading oceanic ridge?• The one with the widest spread of youngest rocksBridging; applying the pattern noted above to this new questionAsk: What measurements could you make to show you are correct• Measure the width of rocks of a certain age (e.g. less than 30Ma) at a certain latitude and compareCognitive conflict: this only works if you compare at a certain latitude		rocks – during plate	knowledge to a
• Continental rocks are too low density to subductBased on the map of the age of oceanic lithosphere, ask: Which is the fastest- spreading oceanic ridge?• The one with the widest spread of youngest rocksBridging; applying the pattern noted above to this new questionAsk: What measurements could you make to show you are correct• Measure the width of rocks of a certain age (e.g. less than 30Ma) at a certain latitude and compareCognitive conflict: this only works if you compare at a certain latitude		collisions	new pattern
Iow density to subductBased on the map of the age of oceanic lithosphere, ask: Which is the fastest- spreading oceanic ridge?• The one with the widest spread of youngest rocksBridging; applying the pattern noted above to this new questionAsk: What measurements could you make to show you are correct• Measure the width of rocks of a certain age (e.g. less than 30Ma) at a certain latitude and compareCognitive conflict: this only works if you compare at a certain latitude		Continental rocks are too	
 The one with the widest spread of youngest rocks The one with the widest spread of youngest rocks Ask: What measurements could you make to show you are correct Measure the width of rocks of a certain age (e.g. less than 30Ma) at a certain latitude and compare at a certain latitude 	Paged on the man of the are of eccenic	Iow density to subduct	Pridaina: applying
Ask: What measurements could you make to show you are correct • Measure the width of rocks of a certain age (e.g. less than 30Ma) at a certain latitude and compare at a certain latitude Cognitive conflict: this only works if you compare at a certain latitude	lithosphere ask: Which is the fastest-	 The one with the widest spread of youngest rocks 	the pattern noted
Ask: What measurements could you make to show you are correct • Measure the width of rocks of a certain age (e.g. less than 30Ma) at a certain Cognitive conflict: this only works if you compare at a latitude and compare	spreading oceanic ridge?		above to this new
Ask: What measurements could you make to show you are correct• Measure the width of rocks of a certain age (e.g. less than 30Ma) at a certain 	· · · · ·		question
snow you are correct of a certain age (e.g. less this only works if you compare at a latitude and compare at a	Ask: What measurements could you make to	Measure the width of rocks	Cognitive conflict:
litali Suvia) at a Certain you compare	snow you are correct	of a certain age (e.g. less	this only works if
		latitude and compare	certain latitude

Ask: How could you measure the speed of a plate? (Note the linear scale given on the map for 20° latitude)	 Measure the width of a certain age of rocks (e.g. less than 30Ma); divide the width by the age to give the spread rate in kmMa⁻¹; divide by two to give the speed of an individual plate 	Arithmetical thinking: calculating the speed
--	---	---