Question/A	ctivity	Likely response	Rationale
In teaching about the Earth we use practical activities to explore Earth processes. This example explores how we can model evidence for the Earth's core, through the Earthlearningidea 'From clay balls to the structure of the Earth'			Preparation for bridging from the model to real Earth properties
Prepare several sets of of Plasticine [™] balls of two of one colour are made of Plasticine [™] only, balls of have a steel ball bearing Give each group of pupil Say that the balls are no or destroyed Ask: Can you detect any between them, apart from	colours. The balls of clay/ of the other colour in the centre is a pair of balls t to be damaged differences	 One ball seems heavier One ball seems more dense 	Concrete preparation: explaining about the balls Construction:
Ask: How could you find out if you are right?	Measure theirSpin or roll the	s – one would be heavier densities – one would be denser balls – one would spin or roll for greater inertia and so is heavier	seeking a pattern (based on density) Bridging: application from their previous experience
If you had time, you could carry out any or all of these tests	One would beThe spin/roll te	found to be heavier found to be more dense est does not work because the low free spinning/rolling	
There are five hypotheses which could account for the fact that one ball is heavier than the other. What are they? Give time for group discussion	 There is some One ball is ma Most groups do no hypotheses: One ball gets s middle 	thing heavy inside one ball thing light (e.g. air) inside one ball ide of denser clay than the other of work out these last two steadily heavier towards the steadily lighter towards the middle	Cognitive conflict: considering different ideas that could explain the pattern
Ask: Without destroying the ball, how could you find out which of these ideas is correct? You could use any equipment in this room, in this town or in this region. Give time for group discussion	 Stick somethir (although som Take a small a to measure its Test with a ma Test its inertia Test it sinertia Test it with ultr Test it with ele machine in hos X-ray it 	ng like a needle into each ball e may say this is destroying it) amount of the surface of each ball density (destroying the ball?) agnet (or magnetic sensor) (maybe mentioned above) rasound ectromagnetic resonance (EMR	Cognitive conflict: considering different testing methods
Comment on what each of these methods would find	 The needle wo centre of one of The density te for the surface A strong magn ball and not th Inertia tests do All the other m 	st would find the same densities Plasticine™ net would attract the ball-bearing	

Ask: Which of these could you use on the Earth in an attempt to find out what is in the middle? Give time for group discussion	 Needle test - like drilling a borehole on Earth. This would fail because boreholes cannot drill deep enough. The deepest borehole on Earth is the Kola Superdeep Borehole in Russia at more than 12km, however the depth to the core (simulated by the ball bearing) is 2890 or nearly 3000km (ref. a mosquito bite on an elephant) Density test – the density of the crust is 2.7-2.9 gcm³ but the density of the whole Earth is 5.5gcm³, so there must be something heavier in the middle (the core) 	Cognitive conflict: considering which of these methods could be used on the Earth Bridging: from the clay balls to the whole Earth
	 Magnet test – both a compass and a dip needle show there is something causing the Earth to be magnetic – thought to be the core Inertia tests – measurement of the Earth's inertia shows a heavy core Ultrasound test – cannot penetrate the Earth (can only detect a foetus in a mother's womb); sonar (sound) cannot penetrate the Earth either, but is very useful for mapping the seabed; infrasound (low frequency shock waves or seismic waves) do penetrate the Earth, and give the best evidence for the core X-ray test – X-rays cannot penetrate the Earth, they are stopped by bones in our bodies Ionising radiation test – α (alpha) radiation cannot penetrate my hand; β (beta) radiation) can just penetrate my hand; γ (gamma) radiation can penetrate several metres of 	
Summarise the methods giving evidence for the	 concrete – but nothing like the whole Earth Density Magnetism Inertia 	
Earth's core Ask: We could have just taught about the Earth's core by asking pupils to draw and label a diagram (so learning about the science of the Earth), but have we just been 'doing' science rather than learning about it?	 Infra-sound (seismic) When scientists 'do' science, they: ask questions come up with ideas to answer these questions (develop hypotheses) think of ways of testing these ideas (observations or experiments) think what these are likely to tell us just as we have been doing here So we have been 'doing' science rather than just learning about it 	Metacognition: thinking about thinking and discussing this

Note: This idea was published as, King, C. (2002) The secrets of Plasticine balls and the structure of the Earth: investigation through discussion. *Physics Education*, 37 (6), 485 - 491 -from which this script has been developed.