The plate tectonic story – online
Part 2
Earth Science for science and geography
– video workshop

Developed from the Earth Science Education Unit
‘The plate tectonic story’ workshop, with permission

© Copyright is waived for original material contained in this workshop if it is required for use within the laboratory or classroom. Copyright material contained herein from other publishers rests with them. Any organisation wishing to use this material should contact the Earthlearningidea team.

www.earthlearningidea.com
Earth Learning Idea
Innovative, Earth-related teaching ideas
Teaching Earthlearningideas

The plate tectonic story

• Divergent margins

Go to: https://www.earthlearningidea.com/Video/V29_DivergentMargins1.html

hyperlink
The plate tectonic story

Divergent plate margins - adding new plate material

Underwater basalt lava at a divergent margin in the public domain by Vintei
The plate tectonic story

Activity at an oceanic ridge – a divergent plate margin
The plate tectonic story

Mid-Atlantic ridge

http://maps.grida.no/go/graphic/world-ocean-bathymetric-map
(Hugo Ahlenius, UNEP/GRID-Arendal)
The plate tectonic story

Icelandic-type eruption
The plate tectonic story

Ancient pillow lavas
The plate tectonic story

Black smoker activity

Black Smoker’ by US National Oceanic & Atmospheric Administration (public domain)
Teaching Earthlearningideas

The plate tectonic story

- Faults in a Mars™ bar

Go to: https://www.earthlearningidea.com/Video/V29_Divergent_margins2.html
The plate tectonic story

Faults in a Mars™ Bar
Modelling a divergent plate margin

Gap between the North American and Eurasian continental plates © Randomskk
The plate tectonic story

Faults in a Mars™ Bar
The plate tectonic story

Faults in a Mars™ Bar

central ‘rift valley’

rigid ‘lithosphere’ moving left

rigid ‘lithosphere’ moving right

ductile flowing ‘asthenosphere’

solid ‘mantle’
The plate tectonic story

A divergent margin rift valley on land
Iceland

Gap between the North American and Eurasian continental plates © Randomskk
Teaching Earthlearningideas

The plate tectonic story

• Magnetic stripes

Go to: https://www.earthlearningidea.com/Video/V30_Magnetic_stripes.html
The plate tectonic story

The magnetic stripes evidence

Research ship used to tow magnetometer
The plate tectonic story

Magnetic anomalies over the Reykjanes Ridge

Black = positive anomaly
White = negative anomaly

The equipment used to show magnetic anomalies © Peter Kennett

Magnetic anomalies over the Reykjanes Ridge © Geoscience, redrawn by ESEU
The plate tectonic story

Magnetic evidence for ocean floor spreading

Calculated magnetic profile: assuming that seafloor spreading occurs, based on known reversals and dates from similar rocks on land.

Observed magnetic profile: measured above the East Pacific Rise by oceanographic survey.

Normal magnetic polarity: (yellow to red)

Reversed magnetic polarity: (light blue to dark blue)

Lithosphere

Zone of magma injection, followed by cooling which leads to the "locking in" of the magnetic polarity.
Meanwhile, it had been found from sequences of volcanic lava flows that the Earth’s magnetic field had ‘flipped’ many times in the geological past.

Magnetisation preserved in rocks – like the petri dish wax magnetic field – but reversed at intervals because of magnetic pole flips.
The plate tectonic story

Classroom demonstration of concepts associated with sea floor spreading

- Pin magnetised by stroking with magnet
- Fold
- Piece of card marked with symmetrical bands either side of the fold
- Card pulled to represent direction of plate movement
The plate tectonic story

Magnetic anomalies over the Reykjanes Ridge

Black = positive anomaly
White = negative anomaly

The equipment used to show magnetic anomalies © Peter Kennett

Magnetic anomalies over the Reykjanes Ridge © Geoscience, redrawn by ESEU
The plate tectonic story

The magnetic stripes are offset by transform faults – conservative or sliding plate margins
Teaching Earthlearningideas

The plate tectonic story

• Convergent margins

Go to: https://www.earthlearningidea.com/Video/V31_ConvergentMargins.html
The plate tectonic story

Convergent plate margins - recycling material

Subduction zone ('partially melts and volcanoes are produced' 'molten rock cools down below the surface') - reproduced with kind permission of USGS, redrawn by ESEU

Continental plate collision zone. Reproduced with kind permission of USGS, redrawn by ESEU

Continental plate collision zone. Reproduced with kind permission of USGS, redrawn by ESEU
The plate tectonic story

Convergent plate margins - recycling material

Ocean v ocean convergent plate margin
– one oceanic plate subducted beneath another

Ocean v continent convergent plate margin
– an oceanic plate subducted beneath a continental plate

 Continent v continent convergent plate margin
– two continental plates colliding
The plate tectonic story

Ocean-ocean convergence

Two oceanic plates meet in the open ocean. The denser plate is subducted into the mantle. Partial melting produces magma which rises to form an island arc.
The plate tectonic story

Convergent plate margins: where plate material is recycled

'A satellite view of the Aleutian Islands, Pacific Ocean' by NASA (public domain)
The plate tectonic story

Island arc volcanism

Zavodovski Island, South Sandwich Island, South Atlantic (Peter Kennett)
The dense oceanic plate descends below the lighter continental one. Partial melting of the basaltic rocks of the ocean floors produces magma which rises. It is richer in silica than basalt and erupts in a more violent way.
The plate tectonic story

Ocean-continent convergence: Mount St Helens
The plate tectonic story

Continent-continent convergence

When two continents are brought together at a converging plate boundary, the continental rocks are of too low density to be subducted. Instead they become folded and faulted, to form a mountain range.

Continental plate collision zone. Reproduced with kind permission of USGS, redrawn by ESEU
The plate tectonic story

Plates in motion – cardboard replica
A working model of how colliding continents produce mountain chains – like this one

The plate tectonic story

Continent-continent convergence

The rapid northward drift of the Indian plate (at 15-40cm per year) produced the Himalayas and Tibetan Plateau when it collided with the Eurasian plate.

Folds at Lhotse (Himalayas) by Michael Searle © University of Oxford

Eurasian Plate (India's movement) © This Dynamic Earth: the Story of Plate Tectonics, USGS, redrawn by ESEU
The plate tectonic story

Plates in motion:
cardboard replica plates in motion

Cardboard replica of plates in motion (photograph) © ESEU
The plate tectonic story

Plates in motion:
cardboard replica plates in motion

moveable wooden block attached to end of thin card
layers of paper serviettes clipped together onto the thin card strip
fixed wooden block taped to card base
thin card strip passes through slit in base
slit in heavy card base
PULL

Cardboard replica of plates in motion (diagram) © ESTA, redrawn by ESEU
The plate tectonic story

Plates in motion:
cardboard replica plates in motion

Photograph of plates in motion © Chris King
Teaching Earthlearningideas

The plate tectonic story

• Deformation

Go to: https://www.earthlearningidea.com/Video/V31_Deformation2.html
The plate tectonic story

Deformation – make your own folds and faults

The Himalayas in 30s...
The plate tectonic story

Deformation – make your own folds and faults

The Himalayas in 30s
The plate tectonic story

Deformation – make your own folds and faults

The Himalayas in 30s
Teaching Earthlearningideas

The plate tectonic story

• Continental jigsaw puzzles

Go to: https://www.earthlearningidea.com/Video/V32_Jigsaw_puzzles.html
The plate tectonic story

Continental jigsaw puzzles - the ‘matching’ evidence

Debating the reconstruction of the supercontinent of ‘Gondwana’ © Peter Kennett
The plate tectonic story

The continental jigsaw puzzles (the outlines of the Gondwana continents)
The plate tectonic story

The continental jigsaw puzzles (continental shelf match at 1000m depth below sea level)

At 1000 m below sea level, the continental rock types give way to oceanic ones. Using this depth for a reconstruction gives a better fit than the present coastlines. Areas of overlap are mostly where features such as deltas have added to the continental margins since break-up.
The plate tectonic story

The continental jigsaw puzzles \((\text{former distribution of ice across the Gondwana continents})\)

Areas covered by ice sheets 300-250 million years ago (rather conjectural for Antarctica because of modern ice cover!)

Direction of movement of ancient ice sheets

The continental jigsaw puzzles \((\text{former distribution of ice across the Gondwana continents})\) © Andrew McLeish in ‘Geological Science’
The plate tectonic story

The continental jigsaw puzzles (matching ancient rock distributions)

The distribution of ancient rocks across South America and Africa © Andrew McLeish in ‘Geological Science’

The distribution of younger rocks across South America and Africa up to the beginning of the continental split. Source unknown, redrawn by ESEU
The plate tectonic story

The continental jigsaw puzzles (distribution of land/freshwater animals and plants in the continents of ‘Gondwana’)

The continental jigsaw puzzles fossil distribution evidence, reproduced with kind permission of USGS
The plate tectonic story

Map of plates and continental distributions today

Map of plates © This Dynamic Earth: the Story of Plate Tectonics, USGS, redrawn by ESEU
Teaching Earthlearningideas

Brickquake

Go to: https://www.earthlearningidea.com/Video/V33_Brickquake.html
The plate tectonic story

Brickquake – can earthquakes be predicted?
How earthquakes work –
and how difficult they are to predict
The plate tectonic story

Brickquake – can earthquakes be predicted?
How earthquakes work –
and how difficult they are to predict
The plate tectonic story

Brickquake – can earthquakes be predicted?

How earthquakes work –
and how difficult they are to predict

Brickquake – can earthquakes be predicted (diagram) © ESEU
The plate tectonic story

Distribution of earthquakes

Depth of focus of earthquake
- Shallow: 0 - 70 km
- Intermediate: 71 - 300 km
- Deep: 301 - 700 km

‘Brickquake’ – can earthquakes be predicted?

Distribution of earthquakes – source unknown, redrawn by ESEU

<table>
<thead>
<tr>
<th>Distance moved (cm)</th>
<th>Force (Newtons)</th>
<th>Relative energy released</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>15</td>
<td>30</td>
</tr>
<tr>
<td>7.5</td>
<td>45</td>
<td>337.5</td>
</tr>
<tr>
<td>3.5</td>
<td>35</td>
<td>122.5</td>
</tr>
<tr>
<td>4</td>
<td>25</td>
<td>100</td>
</tr>
</tbody>
</table>

‘Brickquake’ results

Brickquake (ESEU)
Teaching Earthlearningideas

Party popper eruption

Go to: https://www.earthlearningidea.com/Video/V34_Party_poppers.html
The plate tectonic story

How predictable are volcanic eruptions?
– party popper simulation

Set-up for the party popper activity © Peter Kennett, ESEU
The plate tectonic story

How predictable are volcanic eruptions? – party popper simulation – the result of 156 attempts
The plate tectonic story

How predictable are volcanic eruptions?
– party popper simulation

Volcano alert ‘Chance cards’ © David Turner
Teaching Earthlearningideas

The plate tectonic story

- Plate plenary

Go to: https://www.earthlearningidea.com/Video/V35_Plate_plenary.html
The plate tectonic story

What am I doing?

Published by Jim Henderson under the Creative Commons CC0 1.0 Universal Public Domain Dedication as File:30th St hiline balancing on rails jeh.jpg
The plate tectonic story

Plate-riding

Image of the Earth © Noldoaran

‘Surfer’ by United States Marine Corps (public domain)
The plate tectonic story

Plate-riding

‘How fast am I going?’

‘What is happening in front of me?’

‘In which direction am I travelling?’

‘How can I tell I’m moving?’

‘What is happening behind me?’
The plate tectonic story

Plate-riding

‘How fast am I going?’
(as fast as our fingernails grow)

‘In which direction am I travelling?’
(towards the East)

‘What is happening in front of me?’
(I’m heading towards the Japanese subduction zone, with its earthquakes, volcanoes and mountains)

‘What is happening behind me?’
(new plate material is being formed, as in Iceland)

‘How can I tell I’m moving?’
(GPS measurements over several years, magnetic stripe evidence, age of the sea floor evidence)
The plate tectonic story

Model the five different types of plate margin with your hands
Possible answers include:

- divergent margin
- ocean v ocean
- ocean v continent
- continent v continent
- conservative (transform)
The plate tectonic story

Workshop outcomes
The workshop and its activities provide the following outcomes:
• an introduction to plate tectonics;
• distinction between the ‘facts’ of plate tectonics and the evidence used to support plate tectonic theory;
• a survey of some of the evidence supporting plate tectonic theory;
• explanation of some of the hazards caused by plate tectonic processes - earthquakes and eruptions;
• methods of teaching the abstract concepts of plate tectonics, using a wide range of teaching approaches, including practical and electronic simulations;
• approaches to activities designed to develop the thinking and investigational skills of students;
• an integrated overview of the concepts involved in teaching the processes of plate tectonics.
The plate tectonic story

Copyright

Making a ‘brickquake’ x 3 © ESEU
Marking the points and direction of magnetism using cocktail sticks © ESEU
Set-up for the party popper activity © Peter Kennett, ESEU
Classroom demonstration of concepts associated with sea floor spreading © ESTA redrawn by ESEU
Oceanic ridge © ESTA, redrawn by ESEU
Continental plate collision zone. Reproduced with the kind permission of the USGS. Redrawn by ESEU
The Internal structure of the Earth - reproduced with kind permission of USGS, redrawn by ESEU
The upper part of the mantle and the crust © Chris King and Dee Edwards, redrawn by ESEU
Subduction zone (‘partially melts and volcanoes are produced’ ‘molten rock cools down below the surface’) - reproduced with kind permission of USGS, redrawn by ESEU
Mid ocean ridge © Press & Siever, redrawn by ESEU
Map of plates - reproduced with kind permission of USGS, redrawn by ESEU
Galunggung eruption by USGS – image in the public domain
Photograph, ‘North All Trucks’ © USGS
Battleship grid for Geobattleships © Dave Turner
Distribution of earthquakes - source unknown, redrawn by ESEU
Picture of a plate © Peter Kennett
The Structure of the Earth – from the seismic evidence – reproduced with kind permission of USGS, redrawn by ESEU
Graph of 'Velocities of P and S waves as they travel into the Earth © ESTA, redrawn by ESEU
The Internal structure of the Earth - reproduced with kind permission of USGS, redrawn by ESEU
The lithosphere, asthenosphere and below © ESEU
Ice photographs © Peter Kennett
Student pulling Potty Putty™ © ESEU
Photographs of potty putty™ x 3 © Peter Kennett
Skateboard x 2 © Peter Kennett, ESEU
Theoretical driving mechanisms of plate movement © Pete Loader
The plate tectonic story

Copyright continued...

Slab pull x 2 © David Bailey
Petri-dish magnetic field preserved in iron filings in wax © Michèle Bourne, ESEU
Model magnetic Earth (ESEU)
Magnetic inclination plotted against latitude (graph) © Chris King
Model of the Earth’s magnetic field (drawing) © ESEU
The pattern of heat flow out of the ocean floor and the upper part of the mantle and the crust © Chris King and Dee Edwards, redrawn by ESEU
Underwater basalt lava at a divergent margin in the public domain by Vintei
‘Ancient pillow lava’ by US National Oceanic & Atmospheric Administration – image in the public domain
Photograph of 'The Geological Map of the World’ © Open University
Black Smoker © This Dynamic Earth: the Story of Plate Tectonics, USGS
'Mid-Atlantic Ridge' Map © Hugo Ahlenius, UNEP/GRID-Arendal, http://maps.grida.no/go/graphic/world-ocean-bathymetric-map
Black Smoker’ by US National Oceanic & Atmospheric Administration – image in the public domain
Icelandic-type eruption - reproduced with kind permission of U.S. Department of Interior, USGS
Ancient Pillow lavas © Peter Kennett
Gap between the North American and Eurasian continental plates © Randomskk
Faults in a Mars™ Bar (A rift valley x 2) © Peter Kennett
Research ship used to tow magnetometer © Peter Kennett
Photograph of ‘the equipment used’ to show magnetic anomalies © Peter Kennett
Magnetic anomalies over the Reykjanes Ridge © Geoscience, redrawn by ESEU
Magnetic evidence for ocean floor spreading © This Dynamic Earth: the Story of Plate Tectonics, USGS, redrawn by ESEU
Classroom demonstration of concepts ... © ESTA, redrawn by ESEU
convergent Plate Margins – recycling material © US Geological Survey, redrawn by ESEU
‘A satellite view of the Aleutian Islands, Pacific Ocean’ by NASA - image in the public domain
Zavadovski Island © Peter Kennett
Mount St Helens © USGS/Cascades Volcano Observatory
The plate tectonic story

Copyright continued…

‘The Tibetan Plateau, Himalayas’ by NASA – image in the public domain
Continental-continent convergence, India’s movement © This Dynamic Earth: the Story of Plate Tectonics, USGS, redrawn by ESEU
Folds at Lhotse (Himalayas) by Michael Searle © University of Oxford
Eurasian Plate (India’s movement) © This Dynamic Earth: the Story of Plate Tectonics, USGS, redrawn by ESEU
Cardboard replica of plates in motion (photograph) © ESEU
Cardboard replica of plates in motion (diagram) © ESTA, redrawn by ESEU
Photographs of plates in motion © Chris King
Fold mountains in a chocolate box (animation and still images) © Peter Kennett
Debating the reconstruction of the super-continent of ‘Gondwanaland’ © Peter Kennett
The Continental jigsaws (the outlines of the Gondwana continents) © Author/origin unknown – redraw by Peter Kennett
The Continental jigsaw, continental shelf (best fit at 1000m) © Andrew McLeish in ‘Geological Science’
The Continental jigsaws (former distribution of ice across the Gondwana continents) © Andrew McLeish in ‘Geological Science’
Distribution of ancient rocks across South America and Africa © Andrew McLeish in ‘Geological Science’
Distribution of younger rocks across South America and Africa - source unknown, redrawn by ESEU
Distribution of land/freshwater animals and plants in the continents of ‘Gondwanaland’ - reproduced with kind permission of USGS
Map of Plates © This Dynamic Earth: the Story of Plate Tectonics, USGS, redrawn by ESEU
The Geological Map of the World © Open University
Ground deformation after an earthquake © National Geophysical Data Center (NGDC)
Brickquake – can earthquakes be predicted (diagram) © ESEU
Party popper picture © Peter Kennett
Party popper graph © David Bailey
Chance cards’ © David Turner
‘What am I doing’ (30th St hiline balancing on rails) by Jim Henderson © public domain
‘Surfer’ by United States Marine Corps – image in the public domain / Image of the Earth © Noldoaran
The plate tectonic story – online
Part 2
Earth Science for science and geography
– video workshop

Developed from the Earth Science Education Unit
‘The plate tectonic story’ workshop, with permission

© Copyright is waived for original material contained in this workshop if it is required for use within the laboratory or classroom. Copyright material contained herein from other publishers rests with them. Any organisation wishing to use this material should contact the Earthlearningidea team.