Interpret Earth temperatures from simulated deep-sea and ice cores

Using sweets to simulate oxygen isotope ratios in cores

Demonstrate how the proportions of 18O to 16O in ice and deep-sea cores can be used to interpret past Earth temperatures with 'The oxygen isotope sweet simulation' Earthlearningidea. This uses coloured sweets (e.g. Midget Gems™) which have been divided up into different colours. One set of pale-coloured sweets is put together with one set of darker coloured sweets to represent oxygen isotopes:

- darker-coloured sweets represent water with heavy oxygen – 18O;
- paler-coloured sweets represent water with normal oxygen – 16O.

Cut out some circular disks of paper and put them in the bottom of a set of stacking plastic beakers. Then put a mixture of a few dark and pale-coloured sweets into a plastic beaker to represent one layer in a core. Repeat with a different dark/pale colour sweet ratio in another beaker and stack the two beakers. Do this several times with layers of different thicknesses, to represent a ‘core’ of different layers with different ratios, as in the photos.

Then ask the pupils to draw a graph of Earth temperature against core depth given that:

- if the core is a simulated ice core – the less 18O it contains, the colder Earth’s temperature will be, and vice versa;
- if the core is a simulated deep-sea sediment core – the more 18O it contains, the colder Earth’s temperature will be, and vice versa.

A mock ice core – dark sweets represent 18O, paler sweets represent, 16O. (Chris King.)

A mock deep-sea sediment core – dark sweets represent 18O, paler sweets represent, 16O. (Chris King.)

Deep sea sediment core from the south Atlantic Ocean – showing sediment layers.

Published by Hannes Grobe under the Creative Commons Attribution 3.0 Unported licence.
Notes:
1. The paper circles in the bottoms of the beakers are used to separate the layers more clearly.
2. The students may find it easier to take the beakers apart to work out the dark sweet : pale sweet ratios – but if they do this, they should be sure to note the correct order of beakers.

The back up
Title: Interpret Earth temperatures from simulated deep-sea and ice cores.
Subtitle: Using sweets to simulate oxygen isotope ratios in cores.
Topic: An activity to plot Earth’s temperature indications from mock ice and deep-sea sediment cores.
Age range of pupils: 16 years and above
Time needed to complete activity: 20 minutes
Pupil learning outcomes: Pupils can:
- describe that the lower the proportion of ^{18}O in an ice core layer, the colder the Earth was at the time the layer was laid down;
- describe that the higher the proportion of ^{18}O in a deep-sea sediment core layer, the colder the Earth was at the time the layer was laid down;
- plot a graph of warmer/cooler Earth temperatures from a mock core.

Context:
This activity consolidates understanding of how the $^{18}\text{O}:^{16}\text{O}$ ratios in ice cores and deep-sea cores respectively can be interpreted in terms of warmer (interglacial) or cooler (glacial) Earth temperatures. It also addresses potential misconceptions between oxygen ratios and ice cores; the correct conception is that high ^{18}O ratios in sediment cores indicate glacial periods, while low ^{18}O ratios in ice cores also show glacial periods.

Following up the activity:
Use the internet to find out how ice cores and deep sea sediment cores are drilled.

Underlying principles:
- Snow layers that accumulate on polar ice caps contain less ^{18}O during glacial times than in interglacials.
- Oceans, the shelly animals in them, and the deep sea cores they produce, contain more ^{18}O during glacial periods than in interglacials.
- The $^{18}\text{O}:^{16}\text{O}$ ratios in ice cores and deep-sea sediment cores can be used as a proxy for climate change, indicating when the Earth was subjected to glacial and interglacial periods in the past.
• In ice cores – the less ^{18}O a layer contains, the colder Earth’s temperature was at that time, and vice versa.

• In deep-sea sediment cores – the more ^{18}O a layer contains, the colder Earth’s temperature was, and vice versa.

Thinking skill development:
Pupils construct a pattern of dark to paler sweet proportions in the layers of the simulations and bridge their understanding to interpreting the temperature differences indicated by $^{18}\text{O}^{16}\text{O}$ ratios in cores.

Resource list:
• several bags of sweets that can be divided into different colours (e.g. Midget Gems™)
• a stack of plastic stacking beakers
• paper and scissors to cut out paper disks

Useful links:
• Global warming – the complete briefing, by Sir John Houghton Cambridge University Press.
• ESTA’s ‘Science of the Earth’ ‘Changes to the atmosphere’ at: http://www.estauk.net/pubarchive/index_htm_files/SoE1_Changes_to_the_Airmosphere.pdf

Source: Devised by Duncan Hawley.