Geological mapwork from scratch 3: valley with dipping geology Draw your own cross sections and 3D geological model

A valley with a river looks like this:

The straight glen of the Allt Mhuic from its headwaters on Carn Dubh, Scotland.

the Geograph project. Copyright Richard Webb, licensed under the Creative Commons Attribution-ShareAlike 2.0 license. For the map of a valley below, with dipping geology, draw geological cross sections, A –B, C–D, E–F, G–H, I–J, K–L and M–N. using the cross section profiles on the following pages.

Then use cross sections K–L and M–N and the map to sketch the geology onto the 3D block diagram – to show the 3D geology of the area.

Map of a valley with a river and dipping geology (a black and white version for non-colour printers, is given at the end)

Topographic profiles (horizontal scale equals vertical scale)

Earthlearningidea - http://www.earthlearningidea.com/

The back up

Title: Geological mapwork from scratch 3: valley with dipping geology.

Subtitle: Draw your own cross sections and 3D geological model.

Topic: Part of a series introducing simple geological mapwork. A table of the progression and spiralling of spatial thinking skills involved through the series is given on the final page.

Age range of pupils: 14 - 19 years

Time needed to complete activity: 40 mins

Pupil learning outcomes: Pupils can:

- add geological boundaries to topographical profiles to produce cross sections of geological maps;
- sketch geology onto 3D block diagrams;
- begin constructing a set of mapwork rules;
- use the exercise to understand three dimensional topography and how it interacts with three dimensional geology.

Context:

Pupils are shown a photograph of a straight valley. They are given a simple geological map of such a landform, with beds dipping southward at 14° . They are asked add the geology to topographical cross sections of the valley to produce geological cross sections.

- A–B is drawn by realising it is a true dip section, and so the angle of dip of the boundaries is shown by the dip arrow on the map (14°), so that they should be drawn using a protractor.
- C–D is a section at right angles to the dip direction (and so parallel to the strike), so that the apparent dip of the boundaries will be 0° and they will appear horizontal; they can be drawn as on previous mapwork exercises, by marking the geological boundaries on the cross section, and joining them with straight lines.
- E–F requires the same thinking, but also realisation that the thickness of the limestone is obtained from the previous section.
- G–H and I–J can also be constructed using intersections of the geological boundaries with the contours, and illustrate how apparent dip reduces as the sections become more parallel with the strike.
- K–L and M–N are quick to draw, using principles established previously, but then allow geology to be sketched in on the 3D block model diagram, using the map as well.

Both map and block diagram show how outcrops in a valley 'V' in the direction of dip of the beds.

The map has been constructed using structure contours to ensure that the topographical contours and geological boundaries are correctly drawn – thus pupils need an accurate version of the map to work on.

Further simple mapwork exercises can be developed using this approach, for example by :

- having geology dipping north at perhaps 45°;
- using a spur as a base map, instead of a valley;
- using a map of a series of spurs and valleys.

Following up the activity:

Pupils could be asked to begin to compile a simple set of mapwork rules, as follows:

- horizontal boundaries follow the contours;
- vertical boundaries cut the contours as straight lines;
- in cross sections drawn parallel to the dip of the geology, the angle of dip of the boundaries can be drawn with a protractor, providing the horizontal and vertical scales of the cross section are the same;
- when a cross section is drawn at right angles to the dip (parallel to the strike) the beds appear horizontal (have an apparent dip of 0°);
- apparent dip is always less than true dip;
- in a valley, the boundaries 'V' in the direction of dip of the beds (providing the dip of the beds is steeper than the valley floor).

Underlying principles:

- Geological boundaries can be added to topographical cross sections and block diagrams, to show the three dimensional geological structure.
- An understanding of simple three dimensional geology allows a set of mapwork rules to be developed, as above.
- Pupils who have difficulty in visualising three dimensional geology can draw correct cross sections by applying these rules.

Thinking skill development:

The drawing of topographical and geological cross sections involves spatial thinking skills. The more complex the cross sections become, the more spatial interpretation is needed, including interpolation and extrapolation skills.

Resource list:

- a print off of the map and blank topographic profiles, per pupil
- drawing materials, including pencil, eraser, ruler, protractor and pencil crayons

Useful links:

Higher level mapwork exercises with online tutorials are available for free download from the Open University: <u>http://podcast.open.ac.uk/</u> <u>oulearn/science/podcast-s260_mapwork#</u>

Source: This is the third of a series of simple introductory geological map exercises developed by Joe Crossley and Joe Whitehead. Part I of these series of exercises (from which this exercise comes) was published in '*Geology Teaching*' the journal of the Association of Teachers of Geology in 1979 (Volume 4, No. 2, pages 56 – 61).

© Earthlearningidea team. The Earthlearningidea team seeks to produce a teaching idea regularly, at minimal cost, with minimal resources, for teacher educators and teachers of Earth science through school-level geography or science, with an online discussion around every idea in order to develop a global support network. 'Earthlearningidea' has little funding and is produced largely by voluntary effort.

Copyright is waived for original material contained in this activity if it is required for use within the laboratory or classroom. Copyright material contained herein from other publishers rests with them. Any organisation wishing to use this material should contact the Earthlearningidea team.

Every effort has been made to locate and contact copyright holders of materials included in this activity in order to obtain their permission. Please contact us if, however, you believe your copyright is being infringed: we welcome any information that will help us to update our records.

If you have any difficulty with the readability of these documents, please contact the Earthlearningidea team for further help. Contact the Earthlearningidea team at: info@earthlearningidea.com

Map of a valley with a river and dipping geology

Earthlearningidea - http://www.earthlearningidea.com/

The progression and spiralling of spatial thinking skills shown by the Earthlearningidea 'Geological mapwork from scratch' exercises and the 'Geological mapwork from models' exercises

Intervention Participation Participation Participation Adject Non scratch 2: solution 1111 Constant 1111 Constant 1111 Participation 2 Participation 2 </th <th colspan="2">Exercise</th> <th colspan="2">Topographic</th> <th>Geological</th> <th>Strategies and skills</th>	Exercise		Topographic		Geological	Strategies and skills
Incompany International Add anotage input Modulation Costs actions and plant Modulation Costs actions in the international internatinteristical international international interational i	Manwork from agreetab 1:		Conical b		Surfaces	Dist and draw simple tanggraphic grass sections
Intgrowch from scratch 2: valley with simple geology Skoping valley (maxwork from scratch 3: valley with dipping geology Flat and from scratch 3: valley with dipping from scratch 3: valley with motion 1 Flat and from scratch 3: valley with slopping from scratch 3: valley with slopping from valley with slopping from valley with slopping from valley with slopping from valley with slopping from valley with slopping from valley valley with slopping from valley valley with slopping from valley with slopping from valley with slopping from valley with slopping fro	a conical hill		Conical fill		horizontal	 Add geological boundary intersections and join with straight horizontal lines
Valley with simple geology Photizontal Add geological boundary intersections and join with straight, horizontal lines Magwork from scratch 3: valley with dying Sloping valley Dipping surfaces provide Dipping surfaces provide valley with dying a profractor provide valley geological boundary intersections and join with straight lines Dipping provide valley with dying a profractor provide valley geological boundary intersections and join with straight lines Magwork from scratch 3: rommodel 1 Plain version 1 Filt Filt and horizontal Add geological boundary data to cross sections and join with straight lines subscratch Add geological boundary data to cross sections and join with straight lines Magwork from scratch 3: rommodel 2 Filt Filt and horizontal Plain and horizontal Add geological boundary data to cross sections and join with straight horizontal lines stratces Magwork from scratch 3: rommodel 2 Valley with horizontal Filt and horizontal Add geological boundary data to cross sections which intersect the topographic surface to draw a boundary on the scratce Magwork from models 3: tron Valley with valley with scratch Valley with horizontal Dipping surfaces, vertical Dipping surfaces, vertical Scratch arabit boundary in the cross sections which intersect the topographic surface to draw in boundaries on the surface </td <td colspan="2">Mapwork from scratch 2:</td> <td colspan="2">Sloping valley</td> <td>Flat and</td> <td>Plot and draw simple topographic cross sections</td>	Mapwork from scratch 2:		Sloping valley		Flat and	Plot and draw simple topographic cross sections
geology • Sketch geology not a 3b block diagram Maywork from models 1 Sloping valley Dipping surfaces • Far who dip on a cross section using a protractor Maywork from models 1 Plain Flat • Add geological boundary data to cross sections and join with straight lines Maywork Plain Flat Dipping surfaces • Add geological boundary data to cross sections and join with straight lines Maywork Valley with origina Flat Dipping • Add geological boundary data to cross sections which intersect the topographic surface to diverse boundary data to cross sections which intersect the topographic surface to diverse boundary data to cross sections which intersect the topographic surface to diverse boundary data to cross sections which intersect the topographic surface to diverse boundary data to cross sections which intersect the topographic surface to diverse boundary data to cross sections which intersect the topographic surface to diverse boundary data to cross sections subit intersect the topography. Maywork from models 2: Valley with horizontal • Add geological boundary data to cross sections subit intersect the topography. Maywork from models 3: Valley with horizontal • Dipping surfaces. floor Valley with horizontal • Dipping surface. floor Valley valley Dipping surface. • Add geological boundaris on the surface on secti	valley with simple		, 5		horizontal	Add geological boundary intersections and join with straight, horizontal lines
Magwork from exclub.3: Sloping valley Dipping surfaces • Draw the dip on a cross section using a protractor Magwork from exclub.3: Plain Flat • Dipping surfaces • Add geological boundary intersections and join with straight lines Magwork from exclub.3: Version 1 Flat Flat and • Add geological boundary data to cross sections and join with straight lines Magwork from exclub.3: Version 1 Flat Flat and • Add geological boundary data to cross sections with intersect the topographic surface to the transport function with straight lines Magwork from models 2: Version 1 Flat and • Add geological boundary data to cross sections with intersect the topographic surface to the transport function with straight ines Magwork from models 3: Version 1 Flat and • Add geological boundary data to cross sections with intersect the topographic surface to the transport function of the topographic surface to the transport function of the transport function of the transport function of the topographic surface to transport function of the topographic surface to trans transport function of the topographic surface to trans transport function of the transport	geology					Sketch geology onto a 3D block diagram
Value y with upping geology Plain value y with opping value y with soping value y with value y with soping value y with soping value y with soping value y with value y with value y with value y with value y with value y with	Mapwork from scratch 3:		Sloping valley		Dipping surfaces	Draw true dip on a cross section using a protractor
Mapwork from model 1 Plain version 1 Flat Flat and horizontal Add geological boundary data to cross sections and join with straight, horizontal lines scherb peology on a 3D book dagram Magwork from model 1 Plain version 2 Flat Dipping surfaces; vertical faalure Add geological boundary data to cross sections which intersect the topographic surface to draw a boundary on the surface Add geological boundary data to cross sections which intersect the topographic surface to draw a boundary on the surface Add a vertical traduum (Multication (deology	upping				Add geological boundary intersections and join with straight lines Appreciate that apparent din is always less than true din
Mapwork from models 1 Plain version 1 Flat Flat and horizontal Add geological boundary data to cross sections and join with straight, horizontal lines from the section of	geelegy					 Appreciate that, in valleys, geological boundaries usually 'V' in the direction of dip.
Maywork from models 1 Plain version 1 Flat Flat and horizontal Flat and horizontal Flat and horizontal Add geological boundary data to cross sections and join with straight, horizontal lines surfaces; vertical feature Add geological boundary data to cross sections which intersect the topographic surface to draw a boundary on the cross sections which intersect the topographic surface to draw a boundary on the cross sections which intersect the topographic surface to draw a boundary on the cross sections which intersect the topographic surface to draw a boundary on the cross sections which intersect the topographic surface to draw a boundary on the cross sections which intersect the topographic surface to draw a boundary on the cross section using a protractor Mapwork from models 2; Cuesta version 2 Asymmetrical ridge Dipping surfaces; vertical feature • Draw true dip on a cross section using a protractor Valley with horizontal floor Valley with solffeat Valley with solffeat Dipping surfaces surfaces; vertical floor • Draw true dip on a cross section which intersect the topographic surface to draw in boundaries on the cross sections which messes the topographic surface to draw in boundaries on the cross sections which messes the topographic surface to draw in boundaries on the cross sections which intersect the topographic surface to draw in boundaries on the cross sections which intersect the topography whis sloping floor Mapwork from models 4; Ridge/ valley with sloping floor version 2 Ridge/valley with sloping floor Ridge/valley with sloping floor Ridge/valley with						 Sketch geology onto a 3D block diagram
Magwork from models 1 Plain version 1 Flat and horizontal Add geological boundary data to cross sections and join with straight, horizontal lines were sections and join with straight, horizontal lines were sections which intersect the topographic surface to draw a boundary on the cross sections and join with straight, horizontal lines were sections which intersect the topographic surface to draw a boundary on the cross sections to construct straight, horizontal lines were sections which intersect the topographic surface to draw a boundary on the cross sections to construct straight, horizontal lines were sections which intersect the topographic surface to draw a boundaries Magwork from models 2: version 1 Agymmetrical version 2 Dipping surfaces; vertical feature (u) that moves a geological boundary in the drave coundaries sections which intersect the topographic surface to draw in boundaries on the cross section using a protractor Magwork from models 3: valley with horizontal floor Valley with horizontal floor Dipping surfaces; vertical feature (u) that moves a geological boundaries (d) and a vertical feature (u) that moves a geological formations and topography were in 1 Magwork from models 4: vertical were in the vertice in the vertice in the vertice is alway greater than true thickness is alway greater and than there alway this were sections which intersect the topography version 2 Magwork from models 5: plain (u) with sindigning floor versin 2 Ridger valle						Begin to compile a list of mapwork rules
Models 1 Version 1 Indizonal Plain version 2 Flat Dipping surfaces; vertical feature Add geological boundary data to cross sections which intersect the topographic surface to draw a boundary on the surface Magwork from models 2 Cuesta version 1 Asymmetrical ridge Flat and horizontal Add geological boundary data to cross sections to construct straight, horizontal lines feature Add avertical feature (4/w) Add avertical feature (1/w) Add avertical feature (1/w) Add avertical feature (1/w) functors; version 2 Asymmetrical ridge Dipping surfaces; vertical feature Dipping version 2 Waley with volley with sipping floor Valley with sipping floor Valley with sipping floor Dipping surfaces; vertical feature Dipping surfaces; vertical feature<	Mapwork	Plain	Flat	Flat and	Flat and	Add geological boundary data to cross sections and join with straight, horizontal lines
Network version 2 Plain version 2 Flat Dipping version 1 Add geological boundary data to cross sections and join with straight lines of the cross sections and join with straight lines of the cross sections and join with straight lines of the cross sections and join with straight lines of the cross sections and join with straight lines of the cross sections and join with straight lines of the cross sections and join with straight lines of the surface; vertical indige Magwork Coresta Asymmetrical version 1 Asymmetrical version 2 Plat and horizontal lines indige Add available caburic (kyke) Magwork Coresta Cuesta version 1 Asymmetrical version 1 Dipping surfaces; vertical feature (kyke) Dipping surfaces; vertical feature (kyke) Dipping surfaces; vertical feature (kyke) Magwork from models 3: valley with horizontal floor Valley with sicping loor Dipping surfaces; vertical feature (kyke) Dipping surfaces in the surface sections which intersect the topographic surface to draw in boundaries on the cross sections to construct straight lines + Add a vertical feature (kyke) Magwork from models 4: version 1 Nidge / valley with sicping loor Dipping surfaces Add a vertical feature (kyke) Magwork from models 5: version 2 Nidge / valley with sicping loor Dipping surfaces Add a vertical feature (kyke) Magwork from models 5: valley with sicping loor Dipping surfaces Dipping surfaces	trom models 1	version 1			norizontal	
version 2 ward assessment of the spondarises on the drass sections which intersect the topographic surface to draw a boundary on the surface. • Use boundarises on the drass sections which intersect the topographic surface to draw a boundary on the surface. Mapwork from models 2 Cuesta version 1 Asymmetrical feature (dyke) • Add a vertical feature (dyke) Cuesta version 2 Asymmetrical feature (dyke) • Add a vertical feature (dyke) • Add a vertical feature (dyke) Mapwork from models 3: Valley with horizontal floor • Draw true dip on a cross section using a protractor Walley with horizontal floor • Draw true dip on a cross section using a protractor • Add a vertical feature (duit) that moves a geological boundary Walley with horizontal floor • Draw true dip on a cross section using a protractor • Add parallel geological boundaries Mapwork from models 4 • Ridge / with sipping floor • Dipping surfaces; vertical feature (dyke) • Draw true dip on a cross section using a protractor Mapwork from models 4 • Ridge / with sipping floor • Dipping surfaces • Add paralle geological boundaries on the surface * Ridge / with sipping floor • Ridge / valley with sipping floor • Dipping surfaces • Add paralle geological boundaries on the surface * Valley with sipping floor • Ridge / valley w	models i	Plain	Flat		Dipping	Add geological boundary data to cross sections and join with straight lines
Mapwork from models 2 Cuesta version 1 Asymmetrical ridge Flat and horizontal broizontal Add geological boundary data to cross sections to construct straight, horizontal lines for instruction Mapwork from models 2 Cuesta version 2 Asymmetrical ridge Dipping surfaces: vertical feature - Add a vertical feature (gluke) - Add a vertical feature (gluk) horizontal floor - Draw true dip on a cross section using a protractor Mapwork from models 3: valley with horizontal floor Valley with horizontal floor Use boundaries on the surface horizontal floor - Draw true dip on a cross section using a protractor Mapwork from models 4 Ridge/ valley with horizontal floor Valley with horizontal floor Dipping surfaces: vertical feature - Draw true dip on a cross section using a protractor Mapwork from worsion 2 Ridge/ valley with horizontal floor Ridge/ valley with loging floor Name protecial boundaries on the surface horizontal floor Dipping surfaces horizontal floor - Draw true dip cross sections thich intersect the into between tough and weak geological formations and topography horizontal floor Mapwork from models 5: version 2 Ridge/ valley with horizontal floor Ridge/ valley with horizontal floor - Dipping surfaces horizontal horizontal horizontal horizontal floor Dipping surfaces horizontal horizontal horizontal horizontal horizontal horinthecopentics the in horizontas horizontal horizontal ho		version 2			surfaces; vertical	Use boundaries on the cross sections which intersect the topographic surface to
Mapwork from models 2 Cuesta version 1 Asymmetrical ridge Flat and horizontal ridge Add a vertical feature (dyke) Add a vertical feature (dyke) Asymmetrical ridge Asymmetrical ridge Asymmetrical ridge Asymmetrical ridge Asymmetrical ridge Add a vertical feature (dyke) Mapwork from models 3: floor Valley with horizontal floor Asymmetrical ridge Asymmetrical ridge Dipping valley with sloping floor Dipping valley with sloping floor Dipping valley with sloping floor Dipping valley with sloping floor Parw true dip on a cross section using a protractor Mapwork rom models 4: from version 1 Ridge/valley valley with sloping floor Valley with sloping floor Dipping surfaces floor Dipping surfaces valley with sloping floor Paretalle geological boundaries valley with sloping floor Pidge/valley valley with sloping floor Pidge/valley valley with sloping floor Dipping surfaces valley valley floor Add peological boundaries valley valley coros sections to construct straight lines valley with sloping floor version 2 Ridge/valley valley with sloping floor Dipping surfaces valley valley valley with sloping floor version 2 Ridge/valley valley with sloping floor version 2 Ridge/valley valley with sloping floor version 2 Pint models 6: robust different version 2 Flat valley with sloping floor version 2 Namat and tear dip faults: dipping be					feature	draw a boundary on the surface
Magwork modes Cuesta version 1 Asymmetrical dge Flat and horizontal Add geological boundary data to cross sections to construct straight, norizontal version 2 Asymmetrical ndge Dipping surfaces; vertical horizontal - Draw true dip on a cross section using a protractor Magwork from models 3: valley with horizontal floor Valley with horizontal Dipping surfaces; vertical floor Dipping surfaces; vertical floor Dipping surfaces; vertical floor - Draw true dip on a cross section using a protractor Magwork from models 3: valley with horizontal floor Valley with horizontal Dipping surfaces; vertical floor Dipping surfaces; vertical floor Dipping surfaces; vertical floor - Draw true dip on a cross section using a protractor Magwork from models 4 valley with vorsion 1 Ridge/ valley with vit sioping floor version 2 Ridge/ valley with sioping floor Dipping surfaces - Add geological boundaries - Add geological boundaries - Add geological boundaries - Draw true dip on a cross section using a protractor Magwork from models 5: valley with version 2 Ridge/ valley with sioping floor version 2 Dipping surfaces - Add geological boundaries - Appreciate the ink between tough and weak geological formations and topography - Interpolate approximate true dip rom across sections using a protractor - Add avarial locundaries on the surface - Construct parallel boundaries Magwork from models 5: plain with sitoping floor vall	Manuali	Quanta	A		Elet en el	Add a vertical feature (dyke)
Many models 2 Values and the surfaces of the surface of the s	Mapwork	Cuesta	Asymmetrical ridge		Flat and horizontal	 Add geological boundary data to cross sections to construct straight, horizontal lines
Cuesta version 2 Asymmetrical ridge Dipping surfaces; vertical feature Draw true dip on a cross section using a protractor Mapwork from models 3: valley with horizontal floor Valley with horizontal floor Dipping surfaces; vertical feature	models 2	VEISION				
version 2 iridge surfaces; vertical feature • Add parallel geological boundaries Mapwork from models 3: thoor Valley with horizontal floor Prove factor horizontal floor Prove factor horizontal floor <t< td=""><td></td><td>Cuesta</td><td colspan="2" rowspan="3">Asymmetrical ridge</td><td rowspan="3">Dipping surfaces; vertical feature</td><td>Draw true dip on a cross section using a protractor</td></t<>		Cuesta	Asymmetrical ridge		Dipping surfaces; vertical feature	Draw true dip on a cross section using a protractor
Mapwork from models 3: valley with horizontal floor Valley with brizontal floor Dipping surfaces; vertical feature - Draw true dip on a cross section using a protractor Mapwork from models 3: valley with horizontal floor Valley with horizontal floor Dipping surfaces; vertical feature - Draw true dip on a cross sections which intersect the topographic surface to draw in boundaries on the surface Mapwork from models 4 Ridge/ valley with sloping floor Ridge/ valley with sloping floor Dipping surfaces - Add a vertical feature (dyk) equological boundaries on the surface Mapwork from models 4 Ridge/ valley with sloping floor Ridge/ valley with sloping floor Dipping surfaces - Add a vertical feature (dyk) equological boundaries on the surface Mapwork from models 5: varison 2 Ridge/ valley with sloping floor Dipping surfaces - Add parallel geological boundaries on the surface - Or more valley with brizer valley with plan: cuestar valley with plan: cuestar valley with plan: cuestar valley with plan: with faulted rocks 1 All the model faults: dipping bedding above Surfaces folded into open folds above - The strategies and skills described into open folds above - The strategies and skills described into open folds Mapwork from models 6: plain with faulted rocks 1 Flat Normal and tear dip faults; dipping bedding bedding - Draw an unconformity and a pluol with a metamorphic auroele		version 2				Add parallel geological boundaries
Appreciate the link between togin and weak geological formations and topography willey with horizontal floor						Add a vertical feature (fault) that moves a geological boundary
Mapwork from models 5: plain with faulted rocks 1 All the model faulty: dipping bedding Dipping surfaces feature Dipping surfaces feature Dipping surfaces feature Mapwork from models 4 Ridge/ valley with soping floor Ridge/ valley with soping flo	Manwark from models 2		Vallay with		Dipping	Appreciate the link between tough and weak geological formations and topography
floor floor feature • Use boundaries on the cross sections which intersect the topographic surface to draw in boundaries on the surface Mapwork from models 4 Ridge/ valley with sloping floor version 1 Ridge/ valley with sloping floor version 2 Dipping surfaces 0 Oraw the diperson a cross sections to construct straight lines 0 Mapwork from models 5: plain; cuesta; valley with hardrows above All the model floor fidge/ valley with sloping floor version 2 Dipping surfaces folded 1 The strategies and skills described in the box above and, in addition: 1 Hardrows above and, in addition: 1 Mapwork from models 6: plain; cuesta; valley with hardrows above similar and tear dip faults; dipping bedding 2 Flat Normal and tear dip faults; dipping bedding 2 Mapwork from models 6: plain with faulted rocks 1 Flat Normal and tear dip faults; dipping bedding 2 Draw the effects of normal and a tear dip faults on cross sections 3 plain with faulted rocks 3 Fl	vallev with horizontal		horizontal		surfaces: vertical	Add parallel deological boundaries
Mapwork from models 4 Ridge/ valley with sloping floor Normal and tear dip faults; dipping bedding Dipping surfaces valley with sloping floor Surfaces folded into open folds above Surfaces folded into open folds Surfaces folded into open folds The strategies and skills described in the box above and, in addition: - Draw the effects of a normal and tear dip faults; dipping bedding Diver tof daxes and fold axial planes Mapwork from models 6: plain with faulted rocks 1 Flat Normal and tear dip faults; dipping bedding Draw the effects of anormal and tear dip faults on cross sections Mapwork from models 8: plain with faulted ro	floor		floor		feature	 Use boundaries on the cross sections which intersect the topographic surface to
Mapwork Ridge/ valey with models 4 Ridge/ valey with sloping floor version 1 Ridge/ with sloping floor Ridge/ with sloping floor Dipping surfaces vade averical feature (dyke) Add geological boundaries vade averical feature (dyke) Mapwork from models 4. Ridge/ valey with sloping floor version 1 Ridge/ with sloping floor Ridge/ with sloping floor Dipping surfaces version 1 Nidge/ valey with sloping floor version 2 Ridge/ with sloping floor Dipping surfaces version 2 Dipping surfaces version 2 Valey with sloping floor version 2 Ridge/ with sloping floor Dipping surfaces version 2 Opping surfaces version 2 Valey with sloping floor version 2 Ridge/ valey with sloping floor version 2 Ridge/ valey with sloping floor version 2 Ridge/ valey with sloping floor version 2 Ridge/ valey with sloping floor version 2 Nith emodel surfaces folded into open folds Surfaces folded into open folds The strategies and skills described in the box above and, in addition: version 2 The strategies and skills described in the box above and, in addition: version 2 Mapwork from models 5: plain with faulted rocks 1 Flat Normal and tear dip faults; dipping bedding The strategies and skill described in the box above and, in addition: version 4 Vale version 4 Mapwork from models 6: plain with faulted rocks 2 Flat Normal and reverse strike faults; dipping bedding Draw the effects of normal and reverse strike faults						draw in boundaries on the surface
Mapwork from models 4 Ridge/ valley with soping floor Ridge/ valley with soping floor Ridge/ valley with soping floor Ridge/ valley with soping floor Ridge/ valley with soping floor Normal and tear dip faults; dipping bedding The strategies and skile described in the box above and, in addition: valley with soping floor In the model into open folds Mapwork from models 6: plain with faulted rocks 1 Flat Normal and reverse strike faults; dipping bedding Oraw the effects of a normal and a tara dipger bedding In the effects of varical leatures) Draw the effects of varical leatures)						Construct parallel boundaries on the surface
Mapwork rom models 4 Ridge/ valley with sloping floor version 1 Ridge/ valley with sloping floor version 1 Dipping surfaces Add a version and the protocol of the surface section using a protocol of the surface section using a protocol of the surface section which intersect the topographic surface to darge and the opposite is true of ridge section using a protocol of the surface section using a protocol of the surface of the surface section using a protocol of the surface of the surface section using a protocol of the surface of the surface of the surface section using a protocol of the surface of t						Appreciate that, in valleys, geological boundaries usually 'V' in the direction of dip
Mapwork from models 4 Ridge/ valey with sloping floor Ridge/ valey with sloping floor Dipping surfaces plan version 1 Dipping surfaces floor Add geological boundary data to cross sections to construct straight lines Add parallel geological boundaries Mapwork from version 1 Ridge/ valey with sloping floor version 2 Ridge/ valey with sloping floor Dipping surfaces Dipping surfaces Add parallel geological boundaries to Add parallel geological boundaries to Add parallel geological boundaries to cross section using a protractor Mapwork from models 5: plain; cuesta; valley with horizontal floor; ridge All the model landforms above Surfaces folded into open folds into open folds The strategies and skills described in the box above and, in addition: I dentify fold with equally dipping limbs, and those with limbs dipping at different angles Mapwork from models 6: plain; cuesta; valley with horizontal floor; ridge Flat Normal and tear dip faults; dipping bedding Draw the effects of a normal and a tear dip fault on cross sections Mapwork from models 6: plain with faulted rocks 1 Flat Normal and reverse strike faults; dipping bedding Draw the effects of normal and reverse sections sections Mapwork from models 8: plain with faulted rocks 2 Flat Normal and reverse strike faults; dipping bedding Draw the effects of normal and a reverse sections strike faults; dipping bedding Draw the effects of ormal and reverse strike faults on cross sections						 Appreciate that apparent thickness is always greater than true thickness Add a vertical feature (dyke)
from models 4 valley with sloping floor version 2 with sloping floor with sloping floor with sloping floor Add parallel geological boundaries • Add parallel geological boundaries Add parallel geological boundaries • Add parallel geological boundaries • Add parallel geological boundaries • Add parallel geological boundaries Walley with sloping floor version 2 • Ridge/ valley with sloping floor • Ridge/ valley with sloping floor Dipping surfaces • Draw true dip non a cross section using a protractor • Add parallel geological boundaries to cross sections Mapwork from models 5: plain; cuesta; valley with horizontal floor; ridge/ valley with sloping floor All the model landforms above Surfaces folded into open folds The strategies and skill described in the box above and, in addition: • Identify folds with equally dipping limbs, and those with limbs dipping at different angles Mapwork from models 6: plain with faulted rocks 1 Flat Normal and tear dip faults; dipping bedding • Draw the effects of a normal and a tear dip fault on cross sections Mapwork from models 7: plain with faulted rocks 2 Flat Normal and reverse strike faults; dipping bedding • Draw the effects of rormal and reverse strike faults; dipping bedding • Draw the effects of normal and reverse strike faults on cross sections Mapwork from models 7: plain with faulted rocks 2 Flat Normal and reverse strike faults: dipping bedding • Draw the e	Mapwork	Ridae/	Ridge/ va	llev	Dipping surfaces	Add geological boundary data to cross sections to construct straight lines
models 4 sloping floor floor Propreciate the link between tough and weak geological formations and topography interpolate approximate true dip from apparent dip Praw true dip on a cross section using a protractor valiey with sloping floor Ridge/ valiey with sloping floor Bipping surfaces interpolate approximate true dip on a cross section using a protractor Add parallel geological boundaries to cross sections version 2 Praw true dip on a cross section using a protractor Add parallel geological boundaries on the surface Mapwork from models 5: All the model landforms above Surfaces folded into open folds The strategies and skills described in the box above and, in addition: Plain ; cueska; valley with halted rocks 1 All the model into open folds The strategies and skills described in the box above and, in addition: Plain ; cueska; valley with faulted rocks 1 Plat Normal and tear dip faults; dipping bedding faults; dipping bedding faults; dipping bedding bed	from	valley with	with sloping floor		Dipping canadoo	Add parallel geological boundaries
Version 1	models 4	sloping floor				Appreciate the link between tough and weak geological formations and topography
Hidge/ valley with sloping floor version 2Hidge/valley with sloping floorDipping suffacesDraw true dip on a cross section using a protractor • Ad parallel geological boundaries on the surface • Ad parallel geological boundaries on the surface • Construct parallel boundaries on the surface • Appreciate that, in valleys, geological boundaries on the surface • Appreciate that, in valleys, geological boundaries on the surface • Appreciate that, in valleys, geological boundaries on the surface • Appreciate that, in valleys, geological boundaries on the surface • Appreciate that, in valleys, geological boundaries on the surface • Appreciate that, in valleys, geological boundaries on the surface • Appreciate that, in valleys, geological boundaries on the surface • Appreciate that, in valleys, geological boundaries on the surface • Appreciate that, in valleys, geological boundaries on the surface • Appreciate inverted topography • Draw fold axes and fold axial planes • Draw the different types of fault can have similar effects on outcrop patterns of dipping beds (but different types of fault can have similar effects on outcrop patterns of dipping beds (but different types of fault can have similar effects on outcrop patternsMapwork from models 8: plain with faulted rocks 3FlatNormal and reverse strike faults; dipping bedding• Draw the effects of different sorts of faults on cross sections • Use these to explain how different types of fault can have similar effects on outcrop patternsMapwork from models 8: plain with faulted rocks 3FlatNormal, reverse, trivst and strike-slip faults at 45° to the strike; dipping bedding• Draw the effects of different sorts of faults on cross sections • Use this to explain how different types of fault can have similar effects on		version 1	B : 1 /			Interpolate approximate true dip from apparent dip
Value parallel geological boundaries on the cross sectionssloping floorversion 2Mapwork from models 5: plain; cuests; valley with horizontal floor; ridge/ valley with sloping floorAll the model plain; cuests; valley with horizontal floor; ridge/ valley with sloping floorMapwork from models 6: plain with faulted rocks 1FlatMapwork from models 7: plain with faulted rocks 2FlatMapwork from models 8: plain with faulted rocks 3FlatMapwork from models 8: plain with faulted rocks 3FlatNormal and teverse strike faults; dipping beddingDivging beddingDivging bedding		Ridge/	Ridge/ va	lley	Dipping surfaces	Draw true dip on a cross section using a protractor Add parallel geological boundaries to group postions
version 2 version 2 of aw in boundaries on the surface Mapwork from models 5: plain; cuesta; valley with horizontal floor; ridge, valley with sloping floor All the model landforms above Surfaces folded into open folds The strategies and skills described in the box above and, in addition: • Identify folds with equally dipping limbs, and those with limbs dipping at different angles Mapwork from models 6: plain with faulted rocks 1 Flat Normal and tear dip faults; dipping bedding • Draw the effects of a normal and a tear dip fault on cross sections • Use these to explain how different types of fault can have similar effects on outcrop patterns of dipping bedding Mapwork from models 8: plain with faulted rocks 3 Flat Normal and reverse strike faults; dipping bedding • Draw the effects of normal and reverse strike faults on cross sections • Use these to explain how different types of fault can have similar effects on outcrop patterns Mapwork from models 8: plain with faulted rocks 3 Flat Normal, reverse, thrust 45° to the strike; dipping bedding • Draw the effects of different sorts of faults on cross sections • Use these to explain how different types of fault can have similar effects on outcrop patterns DIY dip and strike model Dipping surface Dipping bedding • Measuring dip, strike and apparent dip on a model dipping surface, using a DIY clinometer if no other clinometer is available Geological mapwork: Surface geology and the geological map. Not given, assumed fairly Relatively complex •		sloping floor	floor	iy		 Add parallel geological boundaries to cross sections Lise boundaries on the cross sections which intersect the topographic surface to
Mapwork from models 5: plain, cuesta; valley with horizontal floor; ridge/ valley with sloping floorAll the model landforms aboveSurfaces folded into open foldsConstruct parallel boundaries on the surface • Appreciate that, in valleys, geological boundaries usually 'V' in the direction of dip and the opposite is true of ridgesMapwork from models 6: plain with faulted rocks 1FlatNormal and tear dip faults; dipping bedding• Draw the effects of a normal and a tear dip faults; dipping bedding• Draw the effects of a normal and a tear dip fault can have similar effects on outcrop patterns of dipping beds (but different types of fault can have similar effects on outcrop patternsMapwork from models 8: plain with faulted rocks 2FlatNormal and reverse strike faults; dipping bedding• Draw the effects of normal and reverse strike faults; dipping bedding• Draw the effects of normal and reverse strike faults; dipping beddingMapwork from models 8: plain with faulted rocks 3FlatNormal and reverse, thrust and strike suip bedding• Draw the effects of normal and reverse strike faults or cross sections • Use these to explain how different types of fault can have similar effects on outcrop patternsMapwork from models 8: plain with faulted rocks 3FlatNormal, reverse, thrust ad strike suip bedding• Draw the effects of different sorts of faults on cross sections • Use these to explain how different types of fault can have similar effects on outcrop patternsMapwork from models 8: plain with faulted rocks 3FlatNormal, reverse, thrust ad strike suip faults at 45° to the strike; dipping bedding• Draw the effects of different sorts of faults		version 2				draw in boundaries on the surface
Mapwork from models 5: All the model plain; cuesta; valley with horizontal floor; ridge/ valley with sloping floor All the model landforms above Surfaces folded into open folds The strategies and skills described in the box above and, in addition: Mapwork from models 6: Flat Normal and tear dip faults; dipping bedding Draw to ld axes and fold axial planes Mapwork from models 7: Flat Normal and reverse strike faults; dipping bedding Flat Normal and reverse strike faults; dipping bedding Draw the effects of normal and reverse strike faults on cross sections Mapwork from models 8: plain with faulted rocks 2 Flat Normal and reverse strike faults; dipping bedding Draw the effects of normal and reverse strike faults on cross sections Mapwork from models 8: plain with faulted rocks 3 Flat Normal, reverse, thrust and strike-slip faults at 45° to the strike; dipping bedding Draw the effects of different sorts of fault can have similar effects on outcrop patterns Mapwork from models 8: plain with faulted rocks 3 Flat Normal, reverse, thrust and strike-slip faults at 45° to the strike; dipping bedding Draw the effects of different sorts of fault can have similar effects on outcrop patterns DIY dip and strike model Dipping Dipping bed Platively complex Platively complex Maesuring dip, strike and apparent dip on a model dipping surface, using a DIY clinometer if no other clinometer is available M						Construct parallel boundaries on the surface
Mapwork from models 5: plain; cuesta; valley with horizontal floor; ridge/ valley with sloping floor All the model landforms above Surfaces folded into open folds The strategies and skills described in the box above and, in addition: Mapwork from models 6: plain with faulted rocks 1 Flat Normal and tear dip faults; dipping bedding The strategies and skills described in the box above and, in addition: Mapwork from models 6: plain with faulted rocks 1 Flat Normal and tear dip faults; dipping bedding That the strategies and skills described in the box above and, in addition: Mapwork from models 7: plain with faulted rocks 2 Flat Normal and reverse strike faults; dipping bedding Normal and reverse strike faults; dipping bedding The strategies and skills described in the box above and, in addition: Mapwork from models 8: plain with faulted rocks 2 Flat Normal and reverse strike faults; dipping bedding Draw the effects of normal and reverse strike faults on cross sections Mapwork from models 8: plain with faulted rocks 3 Flat Normal, reverse, thrust and strike-slip faults at 45° to the strike; dipping bedding Draw the effects of different sorts of faults on cross sections Use this to explain how different types of fault can have similar effects on outcrop patterns Draw the effects of different types of fault can have similar effects on outcrop patterns Mapwork from models 8: plain with faulted rocks 3 Dipping bed Dipping bed						Appreciate that, in valleys, geological boundaries usually 'V' in the direction of dip
Mapwork from models 8: plain; curved valley with sloping floorFlatNormal and tear dip faults; dipping bedding beddingFlatNormal and tear dip faults; dipping beddingOraw the effects of a normal and a tear dip faults on cross sectionsMapwork from models 7: plain with faulted rocks 1FlatNormal and reverse strike faults; dipping beddingFlatNormal and reverse strike faults; dipping bedding• Draw the effects of normal and reverse strike faults on cross sectionsMapwork from models 8: plain with faulted rocks 3FlatNormal, reverse, thrust and strike-slip faults at 45° to the strike; dipping bedding• Draw the effects of different sorts of fault can have similar effects on outcrop patternsMapwork from models 8: plain with faulted rocks 3FlatNormal, reverse, thrust and strike-slip faults at 45° to the strike; dipping bedding• Draw the effects of different sorts of fault can have similar effects on outcrop patternsDIY dip and strike modelDipping surfaceDipping bed assumed fairly complex• Measuring dip, strike and apparent dip on a model dipping surface, using a DIY clinometer if no other clinometer is availableGeological mapwork: Surface geology and the geological map work:Not given, assumed fairly complexRelatively complex• Measuring dip, strike and apparent to places on a geological map where they might be found.	Mapwork fr	om modole 5:	All the me	dol	Surfaces folded	and the opposite is true of ridges
horizontal floor; ridge/ valley with sloping flooraboveanglesanglesMapwork from models 6: plain with faulted rocks 1FlatNormal and tear dip faults; dipping beddingDraw the effects of a normal and a tear dip fault on cross sectionsMapwork from models 7: plain with faulted rocks 2FlatNormal and reverse strike faults; dipping bedding• Draw the effects of normal and reverse strike faults on cross sectionsMapwork from models 8: plain with faulted rocks 3FlatNormal, reverse, thrust and strike-slip faults at 45° to the strike; dipping bedding• Draw the effects of different sorts of fault can have similar effects on outcrop patternsMapwork from models 8: plain with faulted rocks 3FlatNormal, reverse, thrust and strike-slip faults at 45° to the strike; dipping bedding• Draw the effects of different sorts of fault can have similar effects on outcrop patternsDIY dip and strike modelDipping surfaceDipping bed• Measuring dip, strike and apparent dip on a model dipping surface, using a DIY clinometer if no other clinometer is available• Match surface geological features to places on a geological map where they might be found.	plain; cuesta; valley with horizontal floor; ridge/		landforms above		into open folds	 Identify folds with equally dipping limbs, and those with limbs dipping at different
valley with sloping floorAppreciate inverted topographyValley with sloping floor- Appreciate inverted topographyMapwork from models 6: plain with faulted rocks 1FlatNormal and tear dip faults; dipping beddingMapwork from models 7: plain with faulted rocks 2FlatNormal and reverse strike faults; dipping bedding- Draw the effects of a normal and a tear dip fault on cross sectionsMapwork from models 7: plain with faulted rocks 2FlatNormal and reverse strike faults; dipping bedding- Draw the effects of normal and reverse strike faults on cross sectionsMapwork from models 8: plain with faulted rocks 3FlatNormal, reverse, thrust and strike-slip faults at 45° to the strike; dipping bedding- Draw the effects of different sorts of faults on cross sectionsDIY dip and strike modelDipping surfaceDipping bed surface- Measuring dip, strike and apparent dip on a model dipping surface, using a DIY clinometer if no other clinometer is availableGeological mapwork: Surface geology and the geological map work:Not given, assumed fairly faultRelatively complex- Match surface geological features to places on a geological map where they might be found.						angles
 Draw fold axes and fold axial planes Draw fold axes and fold axial planes Draw an unconformity and a pluton with a metamorphic aureole Draw an unconformity and a pluton with a metamorphic aureole Draw the effects of a normal and a tear dip fault on cross sections Use these to explain how different types of fault can have similar effects on outcrop patterns of dipping bedding Draw the effects of normal and reverse strike faults; dipping bedding Draw the effects of normal and reverse strike faults on cross sections Use these to explain how different types of fault can have similar effects on outcrop patterns Draw the effects of normal and reverse strike faults on cross sections Use these to explain how different types of fault can have similar effects on outcrop patterns Draw the effects of different sorts of faults on cross sections Use these to explain how different types of fault can have similar effects on outcrop patterns Draw the effects of different sorts of faults on cross sections Use this to explain how different types of fault can have similar effects on outcrop patterns Draw the effects of different sorts of faults on cross sections Use this to explain how different types of fault can have similar effects on outcrop patterns Draw the effects of different sorts of fault can have similar effects on outcrop patterns Draw the effects of different sorts of fault can have similar effects on outcrop patterns Use this to explain how different types of fault can have similar effects on outcrop patterns Use this to explain how different types of fault can have similar effects on outcrop patterns Use this to explain how different types of fault can have similar effects on outcrop patterns Use this to explain how differ	valley with sloping floor					Appreciate inverted topography
Mapwork from models 6: plain with faulted rocks 1 Flat Normal and tear dip faults; dipping bedding • Draw the effects of a normal and a tear dip fault on cross sections Mapwork from models 7: plain with faulted rocks 2 Flat Normal and reverse strike faults; dipping bedding • Draw the effects of normal and a tear dip fault on cross sections Mapwork from models 8: plain with faulted rocks 3 Flat Normal and reverse strike faults; dipping bedding • Draw the effects of normal and reverse strike faults on cross sections Mapwork from models 8: plain with faulted rocks 3 Flat Normal, reverse, thrust and strike-slip faults at 45° to the strike; dipping bedding • Draw the effects of different sorts of faults on cross sections • DIY dip and strike model Dipping surface Dipping bed • Measuring dip, strike and apparent dip on a model dipping surface, using a DIY clinometer if no other clinometer is available Geological mapwork: Surface geology and the geological map work: Not given, assumed fairly complex Relatively complex • Match surface geological features to places on a geological map where they might be found.						Draw fold axes and fold axial planes
Mapwork from models 0: plain with faulted rocks 1FlatNormal and reverse faults; dipping beddingDraw the effects of a normal and reverse strike faults; dipping bedding beddingDraw the effects of normal and reverse strike faults on cross sectionsMapwork from models 7: plain with faulted rocks 2FlatNormal and reverse strike faults; dipping beddingDraw the effects of normal and reverse strike faults on cross sectionsMapwork from models 8: plain with faulted rocks 3FlatNormal, reverse, thrust and strike-slip faults at 45° to the strike; dipping beddingDraw the effects of different sorts of faults on cross sectionsDIY dip and strike modelDipping surfaceDipping bedMeasuring dip, strike and apparent dip on a model dipping surface, using a DIY clinometer if no other clinometer is availableGeological mapwork: Surface geology and the geological map work:Not given, assumed fairly complexRelatively complexMatch surface geological features to places on a geological map where they might be found.	Manwork from models 6:		Flat Norn		al and tear din	Draw an unconformity and a pluton with a metamorphic aureole Draw the effects of a normal and a tear din fault on cross sections
Mapwork from models 7: plain with faulted rocks 2 Flat Normal and reverse strike faults; dipping bedding • Draw the effects of normal and reverse strike faults on cross sections Mapwork from models 8: plain with faulted rocks 3 Flat Normal, reverse, thrust and strike-slip faults at 45° to the strike; dipping bedding • Draw the effects of different sorts of faults on cross sections DIY dip and strike model Dipping surface Dipping bed • Measuring dip, strike and apparent dip on a model dipping surface, using a DIY clinometer if no other clinometer is available Geological mapwork: Surface geology and the geological map Not given, assumed fairly complex Relatively complex • Match surface geological features to places on a geological map where they might be found.	plain with faulted rocks 1		fault	s; dipping bedding	 Use these to explain how different types of fault can have similar effects on outcrop 	
Mapwork from models 7: plain with faulted rocks 2 Flat Normal and reverse strike faults; dipping bedding • Draw the effects of normal and reverse strike faults on cross sections Mapwork from models 8: plain with faulted rocks 3 Flat Normal, reverse, thrust and strike-slip faults at 45° to the strike; dipping bedding • Draw the effects of different sorts of faults on cross sections DIY dip and strike model Dipping surface Dipping bed • Measuring dip, strike and apparent dip on a model dipping surface, using a DIY clinometer if no other clinometer is available Geological mapwork: Surface geology and the geological map Not given, assumed fairly Relatively complex • Match surface geological features to places on a geological map where they might be found.					patterns of dipping beds (but different effects of vertical features)	
plain with faulted rocks 2 strike faults; dipping bedding • Use these to explain how different types of fault can have similar effects on outcrop patterns Mapwork from models 8: Flat Normal, reverse, thrust and strike-slip faults at 45° to the strike; dipping bedding • Draw the effects of different sorts of faults on cross sections DIY dip and strike model Dipping surface Dipping bed • Measuring dip, strike and apparent dip on a model dipping surface, using a DIY clinometer if no other clinometer is available Geological mapwork: Not given, assumed fairly complex Relatively complex • Match surface geological features to places on a geological map where they might be found.	Mapwork from models 7:		Flat Nor	Norm	nal and reverse	Draw the effects of normal and reverse strike faults on cross sections
Mapwork from models 8: plain with faulted rocks 3 Flat Normal, reverse, thrust and strike-slip faults at 45° to the strike; dipping bedding • Draw the effects of different sorts of faults on cross sections DIY dip and strike model Dipping surface Dipping bedding • Measuring dip, strike and apparent dip on a model dipping surface, using a DIY clinometer if no other clinometer is available Geological mapwork: Not given, assumed fairly Relatively complex • Match surface geological features to places on a geological map where they might be found.	plain with faulted rocks 2		strike f		e taults; dipping	Use these to explain how different types of fault can have similar effects on outcrop netternet
plain with faulted rocks 3 International rocks, under and strike-slip faults at and strike-slip faults at dipping bedding Draw the effects of unrefer sorts of national of closs sections DIY dip and strike model Dipping surface Dipping bedding • Use this to explain how different types of fault can have similar effects on outcrop patterns Geological mapwork: Not given, assumed fairly complex Relatively complex • Match surface geological features to places on a geological map where they might be found.	Mapwork from models 8.		Flat Normal reverse thrust		nal reverse thrust	palletits Draw the effects of different sorts of faults on cross sections
45° to the strike; dipping bedding Dipping bedding DIY dip and strike model Dipping surface Dipping bed Geological mapwork: Not given, assumed fairly Relatively complex	plain with fa	aulted rocks 3	and s		strike-slip faults at	Use this to explain how different types of fault can have similar effects on outcrop
DIY dip and strike model Dipping surface Dipping bedding Geological mapwork: Not given, assumed fairly Relatively complex • Measuring dip, strike and apparent dip on a model dipping surface, using a DIY clinometer if no other clinometer is available Geological mapwork: Not given, assumed fairly Relatively complex • Match surface geological features to places on a geological map where they might be found.			45° to		o the strike;	patterns
DIY dip and strike model Dipping surface Dipping bed • Measuring dip, strike and apparent dip on a model dipping surface, using a DIY clinometer if no other clinometer is available Geological mapwork: Not given, assumed fairly Relatively complex • Match surface geological features to places on a geological map where they might be found.	DIV dia and studies used.		dippii		ng bedding	
Geological mapwork: Not given, Surface geology and the assumed fairly fat fat each or factor of the surface geological features to places on a geological map where they might be found.	אוט מוף and strike model		surface		Dipping bed	 Measuring dip, strike and apparent dip on a model dipping surface, using a DIY clinometer if no other clinometer is available
Surface geology and the assumed fairly complex be found.	Geological mapwork:		Not given,		Relatively	Match surface geological features to places on a geological map where they might
	Surface geology and the		assumed fairly		complex	be tound.