Working out the age of the Earth - moving backwards as time moved forwards Link up your own timeline of how scientists worked out the age of the Earth

Link up the 'headlines' about calculating the age of the Earth (on page 3) like the example below, to show how ideas about the age of the Earth changed over time.

The first line has been drawn to show you what to do.

The back up

Title: Working out the age of the Earth - moving backwards as time moved forwards

Subtitle: Link up your own timeline of how scientists worked out the age of the Earth

Topic: This linking activity encourages pupils to think about how ideas of the age of the Earth changed over time.

Age range of pupils: 11 - 18 years
Time needed to complete activity: 15 mins
Pupil learning outcomes: Pupils can:

- describe how scientists' ideas of the age of the Earth have changed over time;
- describe some of the creative methods scientists have used to tackle the 'age of the Earth' problem.

Context:

The ages linked up correctly will give the matching shown opposite. The linking lines should produce a 'star' of links.

Note that some of the calculations were accurate, but gave the wrong date because not all the data were known at the time. For example, Lord Kelvin's calculation that a molten Earth would take 24 million years to cool was correct; what he didn't know was that the Earth is being continually heated by radioactive decay and so is much older than this.

Earthlearningidea - http://www.earthlearningidea.com/

A graph of Age of the Earth calculations compiled by Bob White is shown below, indicating how many attempts have been made to calculate the age of the Earth and how the age has become older over time, to the present general agreement.

Age of Earth

Following up the activity:

You could discuss (with care) how some religious texts have been interpreted to show that the Earth is very much younger than all the scientists' calculations - as the bible was in 1701 and still is by some people today

Underlying principles:

- A number of different and innovative ways have been used to calculate the age of the Earth since the first scientific estimation in 1779.
- Calculations of the age of the Earth from radiometric dating have given the most reliable figures, and in recent years have all clustered around 4.6 billion years, more easily remembered as near 4567 million years.

Thinking skill development:

Pupils will soon see that a pattern emerges (construction), as the age of the Earth calculations, in general, give older dates over time. Cognitive conflict is generated by Hutton and Lyell who made no calculations, apart from to say that the Earth was very old.

Resource list:

- copies of the sheet on page 3
- pencils and rulers to draw in the links

Useful links:

Able pupils will find Bob White's description of the debate about the Age of the Earth useful. It can be found in Faraday Paper No. 8 at: http://www.stedmunds.cam.ac.uk/faraday/resources/Faraday\ Pa pers/Faraday\%20Paper\%208\%20White EN.pdf

Source: Devised by Chris King of the Earthlearningidea Team. The 'Age of the Earth' graph above was kindly provided by Professor Robert (Bob) White (rwhite@esc.cam.ac.uk) and is used with permission.

[^0]
Earthlearningidea - http://www.earthlearningidea.com/

Link up your own timeline of how scientists worked out the age of the Earth

\square
1788

| Lord Kelvin calculates: |
| :---: | :---: |
| a 24 million year old Earth | William Thompson (Lord Kelvin) worked out that if the Earth

The salt in the sea gives an 80-90 million year date
John Joly worked out how much sodium was being carried to
the sea by today's rivers and, from the saltiness of the
ocean, calculated that the Earth was $80-90$ million years
old.
John Joly

| Radioactive decay shows the Earth
 is 1.4 to 3.8 billion years old |
| :--- | :--- |
| Arthur Holmes calculated, from the decay of radioactive |
| minerals in rocks, that the Earth was more than a billion |
| years old. |
| How a zircon crystal traps uranium as it forms, |
| which then slowly decays to lead |

Radioactive uranium/lead dating of meteorites shows that the Earth is $4.55 \pm 1.5 \%$ billion years old Clair Patterson used radiometric dating to show that meteorites are $4.55 \pm 1.5 \%$ billion years old - and the solar system and the Earth are likely to be the same age.

The curves used to calculate the age
of meteorites from U / Pb decay

[^0]: © Earthlearningidea team. The Earthlearningidea team seeks to produce a teaching idea regularly, at minimal cost, with minimal resources, for teacher educators and teachers of Earth science through school-level geography or science, with an online discussion around every idea in order to develop a global support network. 'Earthlearningidea' has little funding and is produced largely by voluntary effort.
 Copyright is waived for original material contained in this activity if it is required for use within the laboratory or classroom. Copyright material contained herein from other publishers rests with them. Any organisation wishing to use this material should contact the Earthlearningidea team.
 Every effort has been made to locate and contact copyright holders of materials included in this activity in order to obtain their permission. Please contact us if, however, you believe your copyright is being infringed: we welcome any information that will help us to update our records.
 If you have any difficulty with the readability of these documents, please contact the Earthlearningidea team for further help. Contact the Earthlearningidea team at: info@earthlearningidea.com ${ }_{2}$

